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Abstract

High-resolution image mosaicking plays a critical role in geomatics and remote sensing
applications, allowing efficient visualization, measurement, and analysis of large-scale envi-
ronments. Although existing commercial tools provide standard stitching capabilities, they
often lack mathematical transparency and real-time customization, limiting their utility in
research and professional analysis.

This thesis introduces a systematic approach to dynamic image stitching and visualization
within a C# environment. The method uses homography transformations to achieve ac-
curate image alignment while integrating an optimal seam-finding algorithm to improve
visual coherence in overlapping regions. An exportable homography matrix supports co-
ordinate traceability, enabling users to perform metric evaluations on stitched images. The
implementation focuses on creating a lightweight, interactive stitching prototype capable of
processing two to three aerial images with high geometric fidelity and run-time efficiency.

Experimental validation confirms that the system delivers precise stitching results and sup-
ports visual exploration for measurement tasks. By combining mathematical clarity, dy-
namic responsiveness, and user adaptability, this research contributes to a modular and
extensible foundation for image mosaicking in the context of geomatics, with practical rele-
vance for aerial inspection, photogrammetry, and spatial data visualization.
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1. Introduction

1.1. Background and Motivation

Oblique aerial images are images taken by survey aircraft with an inclined camera angle,
offering multiple perspectives of the areas of interest (Verykokou and Ioannidis [2024]).
Oblique aerial images provide more intuitive and stereoscopic views of the structures and
landscapes than traditional nadir images, revealing details that are often obscured from the
vertical view. In addition, compared to panoramas such as Google street view, which can
also offer a 3D-like visualization experience and is usually collected by cars or handheld
devices, oblique aerial images can cover a larger range with better time efficiency and lower
financial cost. Meanwhile, with a larger view field than the panorama, oblique aerial images
have less chance of causing dizziness after viewing (Armstrong et al. [2016]). As moving
through panoramas offers users the view of walking or driving in the street, the continuous
exploration of oblique images offers users the view of flying across the city. With these
advantages, oblique aerial images are particularly valuable in fields such as urban planning,
heritage protection, and disaster management (Zhang et al. [2023]; Höhle [2013]; Tang et al.
[2024]).

Figure 1.1.: An oblique aerial image accurately superimposed on the base map, source: Om-
nibase;

1



1. Introduction

Geodelta has developed a comprehensive platform, Omnibase, which offers combined visu-
alization and easy measurements of point cloud, panorama, nadir images, oblique images,
and 3D meshes (Geodelta [2024]). Omnibase presents the oblique images by assigning them
separately to the accurate locations and range on the map (see Figure 1.1). To give users
a smoother and continuous experience when navigating through consecutive oblique aerial
images, seamless Stitching of the images is essential to improve image visualization as well
as continuous measurement experience.

Figure 1.2.: Stitched images enable measuring objects that locate across the boundaries of
the image frames

1.2. Research Scope

For general applications, image Stitching is the process that can combine different images
by their overlapped areas to obtain an integrated image with a wide view (Wang and Yang
[2020]). Generally, there are two main categories of image Stitching, mosaic Stitching, and
panoramic Stitching (Fu et al. [2023]). Table 1.1 shows the differences between those two
types of image Stitching in various aspects. Taking into account those features of the two
Stitching categories, this thesis project will focus on mosaic Stitching to realize the Stitching
of aerial images.

In the case of aerial oblique images, each individual image already covers a large area and
has a significant file size. Stitching all oblique images in a region into a single integrated
map is impractical due to both computational and visualization challenges. Computation-
ally, such a map would be difficult to process because of its massive size. From a visualiza-
tion perspective, Warping all images to fit a single reference frame can result in significant
distortions.

This M.Sc. thesis focuses on a different approach: Stitching aerial images to provide smooth
and continuous transitions when switching between adjacent oblique images. This dynamic
process ensures seamless navigation between images rather than creating a static large-
scale integrated map. At least two images with the same view direction must be stitched
together to ensure a smooth transition between images. More images in the same column
or row may also be stitched together to create a wider, belt-like view. Users can stop at any

2



1.3. Research Questions

Aspect Mosaic Stitching Panorama Stitching
Purpose Creating a large-scale plane im-

ages.
Generating a wide-angle view
of a scene (panoramic images)

Viewpoint Multiple or moving cameras
(e.g. drone, aircraft, satellite)
with fixed view angle.

Single fixed viewpoint, camera
rotates around its axis.

Geometric Correction Requires significant geometric
corrections for perspective,
scale, rotation, and alignment
due to varying viewpoints.

Primarily focuses on aligning
images with minimal geometric
correction, mainly dealing with
rotation and lens distortion.

Image Overlap Moderate to large overlap be-
tween adjacent images.

Large overlap is required.

Scale and Application Usually larger-scale (e.g. satel-
lite mapping, aerial images) and
approximately plane scene.

Usually smaller-scale, artistic or
photographic applications (e.g.
indoor photos, street views).

Table 1.1.: Comparison between Mosaic Stitching and Panorama Stitching

intermediate stage of their moving actions to do the measurement, especially by measuring
those objects that are divided into two parts by different image frames. Pre-calculations of
some parameters like the transformation matrix between two images will be done to achieve
a fast real-time performance.

Stitching aerial oblique images is a challenge in several aspects. First, oblique images have
perspective distortion depending on the varying distance from the camera to the ground
objects (see Figure 1.3). Second, camera motions will cause parallax and alignment errors
(Azzari et al. [2008]). Third, varying elevation in the terrain can cause visible artifacts in the
stitched images if not handled properly (Steedly et al. [2010]).

To solve these problems, image processing technologies including Tie-point matching and
Warping are needed. This research also incorporates camera parameters and camera motion
model in photogrammetry. Optimal seam algorithm (Ai and Kan [2020]) is also applied to
preserve the building structure as much as possible. The process only applies perspective
distortion to the calibrated aerial images ,thus the final results will preserve the feature of
straight lines, which can help to apply precise measurement on the images. With a combina-
tion of those technologies, the main goal of this research is to create seamless mosaics from
oblique aerial images, allowing for a continuous and immersive aerial view experience, as
well as minimum errors in measurements through the oblique aerial images.

1.3. Research Questions

The research questions addressed in this M.Sc. thesis, along with the expected outcomes,
are focused on processing existing oblique aerial image data of city-scale in Omnibase to
achieve seamless Stitching and smooth transitions. The main research question is as follows:

How can seamless oblique image mosaics be created dynamically from aerial photographs
to enhance continuous visualization and minimize measurement errors?

3



1. Introduction

Figure 1.3.: Oblique aerial images of the same area in Utrecht with different perspective
distortion, source: Omnibase

The subquestions under this main questions include:

1. To what extent can the Stitching achieve a continuous transition between oblique aerial
images? And how is continuity measured?

2. How does the area of the intersection or the number of detected Tie-points between
two images influence the Stitching quality?

3. How does the seam in the stitched images influence the visualization effect?

4. What is the robust method for oblique aerial image Stitching when the intersection
area is small?

5. How does the Stitching process impact the usability of images for measurement tasks?

6. How is Stitching quality assessed from both visualization and measurement aspects?

1.4. Thesis Outline

Chapter 1 gives an overview of this thesis, including motivation, research background, re-
search scope, and research questions.

Chapter 2 outlines the foundational concepts required for the study, including the features
of oblique aerial images and the techniques involved in image Stitching, such as key point
detection and image Morphing.

Chapter 3 presents a review of the relevant literature, including existing visualization plat-
forms for oblique aerial images, measurement techniques, and panoramas.

Chapter 4 describes the methodology employed in the study, detailing preprocessing, image
Warping, and measurement transformation techniques.
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1.4. Thesis Outline

Chapter 5 covers the implementation details, including query operations, lens distortion
calibration, image Warping, seam finding, dynamic Morphing processes, and how to apply
measurements on stitched images.

Chapter 6 presents the experimental results and the methodology evaluation, including an
overview of the stitched images, an evaluation of the geometric accuracy, and the result of
the real-time stitch performance test.

Chapter 7 summarizes the study’s contributions and answers the research questions. The
chapter concludes with insights and suggestions for future work to improve the methodolo-
gies explored in this thesis.
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2. Theories and Concepts

2.1. Features of Oblique Aerial Images

Oblique aerial imagery has gained attention in the field of photogrammetry and remote
sensing due to its ability to capture detailed perspectives of buildings, terrain, and other
surface features from an inclined angle. Images with an optical axis that deviates from the
vertical more than five degrees are usually considered oblique images (Verykokou and Ioan-
nidis [2024]; Höhle [2008]). Contemporary oblique systems typically employ multicamera
setups to capture images from several angles. The most frequently used setup is called
Maltese-cross configuration, which consists of a vertical camera facing downward and four
oblique cameras angled towards the cardinal directions. This configuration ensures symmet-
rical coverage of ground objects and maximizes the likelihood that any vertical surface, such
as the sides of a building, will be captured from at least one camera. In this thesis project,
the oblique image data are also collected from Maltese-cross cameras (see Figure 2.1).

Figure 2.1.: Focal length, camera inclined angle, and camera frame in this thesis project.

Despite the advantage of façade visibility, oblique aerial images also have more perspective
distortion than nadir images caused by the varying ground sample distance. The lower
side of the image, which is closer to the camera, appears to be larger and more stretched
than the upper side. When the camera moves, the upper side of the previous image will be
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2. Theories and Concepts

Figure 2.2.: Perspective distortion in oblique aerial images

placed in the lower side in the next. Since the position of the camera center which is also the
perspective center has changed, a simple 2D-motion perspective model cannot fully describe
this change. Thus, a more complicated motion model should be employed to stimulate the
change of camera centers and the perspective relationships between different images to the
same ground objects. Figure 2.2 illustrates the perspective distortion. Two roofs of the same
size can look different on the same camera, and the same roof can also have different sizes
on different cameras.

2.2. Image Stitching Technique

Multiple image Stitching techniques are applied to different scenarios, including merging
images taken by daily mobile devices (Laraqui et al. [2017]), generating panoramic images
(Brown and Lowe [2007]), Stitching large-scale nadir aerial images (Pham et al. [2021]), etc.
In addition to the specific techniques used in different scenarios, there are some common
basic steps in image Stitching, including detecting key points, matching the corresponding
points, and image Warping.

2.2.1. Key Point Detection and Matching

Distinctive invariant features are considered the key factors that can be used to decide the
correspondence between different images. Many algorithms have attempted to detect and
match key points that are invariant in scale and rotation. Some widely used algorithms are
presented and discussed in this section.
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2.2. Image Stitching Technique

Key Point Detection

• Scale Invarint Feature Transform (SIFT) by Lowe [2004]: First, the Gaussian filter is
applied to the input image to find the scale space of the image. The local maxima and
minima are calculated based on the Difference of Gaussians (DoG) and are considered
as the potential key points that are invariant to the scale. After selecting the potential
key points. Finally, a localization algorithm refines the key point selection by fitting
them more precisely to nearby data. Every remaining high-contrast key point is as-
signed one orientation based on local image gradient directions. Finally, each output
key point would have a highly distinctive descriptor. The descriptors are used to match
the corresponding key points in different images.

• Speed-up robust features (SURF) by Bay et al. [2008]: Partly inspired by SIFT, SURF
has steps similar to SIFT, and some adjustments are applied in each step of feature
detection. First, it uses box Gaussian filters to create the scale space and a Hessian
matrix as a measure of local change around a single point. The point will be chosen
when its Hessian determinant is maximal. To make sure the descriptor of the key
point is rotation invariant, SURF calculates the Haar wavelet responses in the x and
y directions within a circular neighborhood around the point of interest. SURF will
construct a square region around the detected key point and divide it into 4 × 4
subregions. Then, the Haar wavelet responses are summed up over each subregion
and form a feature vector as descriptor. According to the author of SURF, the SURF
detector has a faster speed, which is the main improvement and makes it suitable for
real-time computation.

• Oriented FAST and Rotated BRIEF (ORB) by Rublee et al. [2011]: This method is
built on the FAST detector (Rosten and Drummond [2006]) and the BRIEF descriptor
(Calonder et al. [2010]). The original Features from Accelerated Segment Test (FAST)
detector used machine learning to find key points, but did not include the orientation
component. The ORB measured the orientation by intensity centroid and added this
attribute to the key points detected by FAST. Binary Robust Independent elementary
features (BRIEF), as a binary string key-point descriptor, is computationally efficient but
performs badly with rotation. The ORB steered the BRIEF according to the orientation
of the key points, thus improving the BRIEF performance in rotated images. ORB is
much faster than SURF and SIFT, but it still has problems with scale invariance.

• DIScrete Keypoints (DISK) by Tyszkiewicz et al. [2020]: DISK used reinforcement
learning and achieved end-to-end feature matching for a large amount of points. It
first used a U-Net (Ronneberger et al. [2015]) based architecture to extract a detection
heatmap and then divided this heatmap into grid cells. The key points are sampled
within each cell using softmax normalization and a sigmoid-based quality filter. Using
reinforcement learning, DISK is trainable and flexible for specific tasks, compared to
constructing hand-crafted features such as SIFT and SURF.

Detected Feature Matching

After detecting the key points, matching them with the corresponding images is the next
step. The descriptors generated when detecting the features are essential for the matching.
For example, a simple use case is to calculate the pairwise distance of all descriptors and
find the nearest neighbor as the best match. However, in practice, the real-world images
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are very noisy, leading to false matches if only the distance of the descriptors is used as
a matching reference. Furthermore, comparing all descriptor distances from all key points
has a computational time complexity of O(n2) with a quadratic in the expected number of
features. Thus, some more sophisticated techniques are used for feature matching.

• Random sample consensus (RANSAC): RANSAC is an iterative algorithm used to esti-
mate parameters of a mathematical model from a dataset that may contain significant
outliers (Fischler and Bolles [1981]) and is widely applied in computer vision (Stewart
[1999]). It starts by entering key points using a similarity measure, such as the distance
for the SIFT descriptors. Then RANSAC will randomly select a minimal subset of corre-
spondences and compute a linear estimate that has the physical meaning of the camera
motion. RANSAC will compute the residuals between the real points locations and the
estimated locations and will consider those with residuals smaller than the predefined
threshold as inliers. The random selection, model fitting, and inlier counting process
will repeat until the estimate gets the maximum number of inliers. RANSAC is efficient
when processing noisy data and can produce a high-accuracy alighment.

• Transformer used in feature matching: The transformer, a well-known deep learning
architecture, has been widely applied to feature matching, due to its self and cross
attention mechanisms to consider the relationship between all input key points (Car-
ion et al. [2020]). Two of the most famous models for feature matching are SuperGlue
(Sarlin et al. [2020]) and LightGlue (Lindenberger et al. [2023]). The transformer as
the backbone of these models consists of self-attention layers to aggregate informa-
tion from other features within the same image, as well as cross-attention layers to
aggregate the information from features in the other image. However, built upon
SuperGlue, LightGlue also has some differences and improvements compared to Su-
perGlue. First, LightGlue uses relative positional encoding, which can better capture
long-range dependencies. For the scoring system, SuperGlue uses the Sinkhorn al-
gorithm, an iterative method for optimal transport, to compute the correspondence
points between two points. In LightGlue, a simpler matchability and similarity scor-
ing system is designed to compute a pairwise score matrix between the points of both
images. Additionally, LightGlue also introduces a pruning mechanism. At the end of
each layer, a confidence classifier determines if the matching predictions are reliable.
If it is confident, the program will stop early to save computation time. Points that
are classified as unmatchable are pruned early to focus computation on relevant fea-
tures. In the experiments by the authors of LightGlue, DISK + LightGlue is proved to
be the combination of feature detector and matcher with the highest accuracy. In their
experiments, LightGlue shrinks 35% of the running time compared to SuperGlue.

Geodelta has already built the database for aerial images of Utrecht with matched tie points
by applying a deep neural network, LightGlue (Lindenberger et al. [2023]). LightGlue
matches local sparse features with high efficiency and robustness in accuracy. LightGlue
performs best for adjacent images with the same view direction although it can also find a
few corresponding points between those images that have little intersection areas or with
different view directions. The thesis project will focus on the adjacent images with the
same view direction for image Stitching. The two images on the left of figure 2.3 shows the
overview of the matching result, there are 588 pairs of Tie-points in total. The two images
on the right of figure 2.3 show some details of the matching results of the two images on the
right which are mostly correct but still have some errors. In practice, the key points detected
in more than two images will be selected as reliable tie points. Most of the matching results
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for adjacent image pairs have numbers of Tie-points between 200 and 600, which is sufficient
for building the warping transformation.

Figure 2.3.: Tie-points matching results for two adjacent oblique aerial images with the same
view direction, source: Phoxy

2.2.2. Image Warping

Image Warping is a technique that is used to distort images. The goal of Warping in this
thesis is to apply geometric transformation to map a source image onto a target coordinate
system by spatial deformation. According to Wolberg [1990], digital Warping consists of two
primary steps: coordinate transformation and intensity interpolation. Glasbey and Mardia
[1998] further categorize Warping methods into parametric and non-parametric approaches,
emphasizing their applications in image registration, motion correction, and shape analysis.
Parametric Warping uses mathematical functions with a finite set of parameters to define the
transformation, while the non-parametric transformation uses data-driven methods without
an explicit parameter equation. Parametric transformations are usually applied globally and
ensure the global smoothness, while nonparametric transformations are more flexible for lo-
cal variation or non-rigid motion. From the computational cost aspects, parametric Warping
is more efficient due to its reliance on mathematical equations. Considering the features of
parametric and nonparametric Warping, parametric Warping fits better in processing large-
scale aerial images used for measuring.
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2. Theories and Concepts

Warping based on 2D transformation

The 2D transformation model shows how a flat plane in 3D space is projected into two dif-
ferent 2D images. Global Warping based on 2D motions can be achieved through global
linear transformations of the image. These transformations are represented by a transforma-
tion matrix, which can have Degrees of Freedom (DoF) ranging from 2 to 8. This corresponds
to the minimum need for only 1 to 4 pairs of corresponding points to define the transfor-
mation. The DoF determines the type of transformation, allowing various operations such
as translation, scaling, rotation, shearing, or a combination of these. Figure 2.4 illustrates
the basic types of 2D transformations, including rigid transformations (translation and rota-
tion), similarity transformations (scaling and rotation), affine transformations, and projective
transformations. Each type provides progressively more flexibility in Warping the image,
with projective transformations allowing the highest degree of non-linear adjustment. These
global transformations are particularly useful for scenarios where the deformation is uni-
form across the entire image.

Figure 2.4.: Basic types of 2D transformations (Szeliski et al. [2007])

One of the most important 2D transformations in image Stitching is the projective transfor-
mation. Projective transformation, also known as perspective transformation or homogra-
phy, is a type of 2D transformation that maintains perspective relationships between points.
It illustrates the effect that the near objects are big and far objects are small. The straight
lines remain, but the angles, distance and parallel relationship are not preserved. The per-
spective transformation can map any quadrilateral to another quadrilateral, making it very
flexible for Warping and alignment. Thus, perspective transformation is widely used in im-
age rectification, Stitching, and projection. A projective transformation can be represented
mathematically using a 3×3 Homography matrix 2.1:

H =

h11 h12 h13
h21 h22 h23
h31 h32 h33

 (2.1)

The matrix H is defined up to scale (i.e., the matrix is normalized such that h33 = 1 or an-
other value), there are 8 independent unknowns to solve for: h11, h12, h13, h21, h22, h23, h31, h32.
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The relationship between a point (x, y) in the source image and the transformed point (x′, y′)
in the target image is given by 2.2:

x′

y′

w

 = H ·

x
y
1

 ‘ (2.2)

Where:

x′ =
h11x + h12y + h13

h31x + h32y + h33
, y′ =

h21x + h22y + h23

h31x + h32y + h33
(2.3)

Cross-multiplying to eliminate the denominators gives two linear equations for each corre-
spondence:

h11x + h12y + h13 − h31x′x− h32x′y− h33x′ = 0,

h21x + h22y + h23 − h31y′x− h32y′y− h33y′ = 0.
(2.4)

Thus, each pair of points contributes 2 equations to the linear system, and we can get a
2n× 9 matrix A (2.5):

A =


−x1 −y1 −1 0 0 0 x′1x1 x′1y1 x′1

0 0 0 −x1 −y1 −1 y′1x1 y′1y1 y′1
−x2 −y2 −1 0 0 0 x′2x2 x′2y2 x′2

0 0 0 −x2 −y2 −1 y′2x2 y′2y2 y′2
...

...
...

...
...

...
...

...
...

 (2.5)

For the unknown elements in H (2.1), we can write them into a vector h (2.6) and the
equation to solve can be written as 2.7:

h =
[
h11, h12, h13, h21, h22, h23, h31, h32, h33

]T (2.6)

Ah = 0 (2.7)

Since there are 8 unknowns in the homogeneous equation 2.7, at least 4 pairs of non-
collinearity points are needed to solve them. The system will be solved with the Singular
Value Decomposition (SVD).

Warping based on 3D transformation

In real world applications, the camera can undergo translation as well as rotations. Also,
scenes like terrains and buildings are usually not planar. 3D transformation has a hierarchy
similar to that of the 2D transformation and can be denoted using 4×4 transformation ma-
trices which describe rigid body motion and affine transformations (Szeliski et al. [2007]).
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In photogrammetry, the intrinsic matrix K (2.8) describes the internal parameters of the
camera, including the focal length ( fx, fy), the skew distortion (s) and the center of the
image (cx, cy).

K =

 fx s cx
0 fy cy
0 0 1

 (2.8)

In the 3D perspective model, a 4×4 projection matrix P (2.9) is constructed based on the
intrinsic matrix K (2.8). This matrix maps the homogeneous 4-vector p = (X, Y, Z, 1) to a
special kind of homogeneous screen vector q̃ = (x, y, 1, d). Here, d represents the inverse
depth ( 1

Z ), also known as the disparity in stereo vision.

q̃ ∼
[

K 0
0T 1

]
p = Pp, (2.9)

Despite the intrinsic parameters, the motion of the camera also influences the position of the
projected point in the image plane. Thus, the 3D rigid body motion E (2.10) is also a part of
the final Homography matrix.

q =

[
R t
0T 1

]
p = Ep, R =

rT
1

rT
2

rT
3

 , t =

tx
ty
tz

 (2.10)

So, considering both the perspective projection P and the camera motion, the relation be-
tween the camera coordinates to the 3D coordinates can be written as 2.11

q̃0 ∼ P0E0 p. (2.11)

In contrast, if we know the depth of a pixel in an image, we can map it back to the 3D
coordinate p using 2.12

p ∼ E−1
0 P−1

0 q̃0 (2.12)

Thus, by projecting a pixel back to the 3D world and projecting it to another image plane,
we can discover the relationship between the pixels in two different images. 2.13 describes
this projection process.

q̃1 ∼ P1E1 p = P1E1E−1
0 P−1

0 q̃0 = M10q̃0. (2.13)
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M10 can be explicitly written with intrinsic and extrinsic matrix as:

M10 =

[
K1R1R−1

0 K−1
0 K1

(
t1 − R1R−1

0 t0

)
0T 1

]
(2.14)

If the camera only has rotation without transformation(t1 = 0), the matrix can be simplified
as equation 2.15. Figure 2.5 illustrates this scenario.

M̃10 = K1R1R−1
0 K−1 (2.15)

Figure 2.5.: The same object on different images taken by a fixed camera with rotation

Back to the universal scenario, M10 can be explicitly written as:

M10 =


m11 m12 m13 m14
m21 m22 m23 m24
m31 m32 m33 m34

0 0 0 1

 (2.16)

In 2.16, the elements m13, m23, m33 represent how changes in depth (Z direction) of a point
in image 0 affect its coordinates in the plane of image 1. However, it is hard to get the
height of the terrain objects for every pixel in a high-resolution image. The matrix is usually
simplified by assuming a planar scene for the image range in practical (Szeliski et al. [2007]).
The depth-dependent column (m13, m23, m33) is ignored as the last row of matrix M10 which
is used as a mathematical placeholder for homogeneous coordinate transformations in 3D
space. This matrix without depth also simulates a special situation in which the sights the
camera is observing are almost flat (see Figure 2.6).
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Figure 2.6.: The same object on different images taken by moved camera in a flat terrain
scenario

The reduced mapping equation between image 0 and image 1 is a 3× 3 Homography matrix
which can be written as:

H10 =

m11 m12 m14
m21 m22 m24
m31 m32 m34

 (2.17)

Mathematically, the matrix H(2.1) and H10(2.17) have similar forms and exactly the same
8 degree of freedom. However, they are composited in totally different ways. The H is
generated by solving the linear system 2.7 which is constructed by the corresponding pair
of points. The H10 is derived from known camera parameters. Warping quality by using
H highly depend on the matching point data quality including their geometric accuracy,
matching accuracy, and distribution on the image. For Warping with H10, the results rely
mainly on the quality of camera parameters, which is more stable than using H if those
parameters are precisely calibrated.

Other Warping Methods

Despite the linear methods above which use a single Homography matrix, there are various
more complex Warping methods for different purposes such as image Stitching or image
Morphing. The following mainly introduces the Warping method applied for image Stitch-
ing.
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• Dual-Homography warping: Dual-Homography is used for panoramic Stitching when
the camera undergoes a slight transformation instead of rotating precisely around its
optical center(Gao et al. [2011]). This method uses K-means clustering to divide the
Tie-points into two groups that represent the ground and the distant plane. Then, it
estimate two separate homography for each plane and generates a per-pixel weighting
map to blend these two homography into a nonlinear warp for seamless alignment.The
approach is particularly suitable for panoramic scenes commonly captured at tourist
locations, where there are clear distinctions between a distant background and a closer
ground plane. However, Dual-Homography will also cause an obvious folding trace
on the warped image, and it will fail when the image contains large structures like
high buildings that cannot be divided to any of the ground or distant plane.

• Local warping: local Warping is commonly used in image Morphing especially when
the object on the image has complex and non-linear boundaries like human face (Efros
[2016]). In image Stitching, it has also become popular to deal with the parallax. The
basic idea is to divide the image into meshes such as grids or triangle nets. Then, it
calculates the local projective matrix for each mesh and warps the image mesh by mesh.
One of the most used techniques is called As-Projective-As-Possible (APAP) (Zaragoza
et al. [2013]). The key technique of APAP is Moving Direct linear transformation (DLT),
which computes a local homogeneous matrix for every pixel. The resulting APAP warp
smoothly varies across the image, allowing localized adjustments and flexibility. APAP
has a relatively high time complexity and will take tens of seconds for an image with
1500× 2000 pixels with some C accelerations. Also, to obtain a perfect Stitching result,
fine-tuning of the parameters in APAP and other local Warping methods is necessary.

• Other non-linear warping: Adaptive As-Natural-As-Possible (AANAP) (Lin et al. [2015])
Stitching addresses distortions similarly to APAP by employing spatially varying local
homographies combined with global similarity transformations. AANAP emphasizes a
smoother transition between local and global transformations to minimize perspective
distortion. Similarly to APAP, AANAP also have relatively high computational complex-
ity. Quasi-homography (Li et al. [2017]) warps propose a balance between projective
and perspective distortions by slightly adjusting a global homography warp, using
linearized scaling factors. Quasi-homography can obviously improve the visual effect
when the overlap rate between images is small and remain stable for multiple image
Stitching. This approach retains simplicity, avoiding APAP’s high computational com-
plexity and parameter sensitivity while still effectively reducing visible distortions in
image Stitching.

2.2.3. Image Composition

Optimal Seams

Optimal seam finding is a critical stage in image Stitching, which significantly impacts the
quality and seamlessness of the final mosaics. As illustrated in Figures 2.5 and 2.6, there
are only few cases in which the 3× 3 Homography matrix can fit the transformation be-
tween images very well. However, the real-world scenarios can be so complex that a single
homography could not cover, especially the rugged terrain or abrupt high buildings. Fig-
ure 2.7 illustrates the image Stitching with elevation changes, which is common in the real
world. The defects of the Homography matrix will lead to duplicated or broken objects in
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the stitched images. To reduce the influence of elevation change by avoiding going to certain
objects such as the rooftop, optimal seam finding is necessary for single homography Stitch-
ing with camera movement. Despite its advantage in reducing the error caused by elevation
changes, it preserves the structure of buildings or even microstructure such as solar panels
or some textures.

Figure 2.7.: The image Stitching process considering the elevation changes

Various algorithms have been proposed and developed over the years, aiming to efficiently
identify seams that minimize visible artifacts. Although we obtain the optimal seam by
different methods, the expected outcomes have the same feature, which is to allow the seam
to lay as much as possible on the uniform textures. Figure 2.8 illustrates the concept of
optimal seams by avoiding seams on the building.

Figure 2.8.: An optimal seam (the red dashed line) across the overlapping area
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Graph cut is a classic image segmentation algorithm that models a problem as a graph,
where the nodes represent pixels, and the edges represent the costs of labeling (Greig et al.
[1989]). The goal is to divide the graph into two or more segments by finding the cut with
the minimal cost, which corresponds to the optimal solution. It divides the graph by finding
the minimal-cost cut, yielding an optimal solution. In image Stitching, the overlap region is
treated as a labeling problem, assigning each pixel to a source image. A weighted graph is
constructed, where the edge weights reflect the pixel dissimilarity. The Min-Cut/Max-Flow
algorithm (Goldberg & Tarjan [1988]) optimizes the cut, ensuring that seams minimize visual
artifacts. The global optimality makes graph-cut also The complexity of the algorithm ranges
from O(VE2) (Dinic [1970]) to O(VE)(Greig et al. [1989]), where V refers to the number
of nodes (pixels of the image) and E refers to the number of edges (connections between
neighboring pixels). For high-resolution images, the complexity of the graph-cut algorithm
could lead to a long operation time.

Unlike graph-cut methods, which solve a global optimization problem, dynamic program-
ming simplifies seam finding by decomposing it into subproblems through sequential com-
putations. Dynamic programming considers seams throughout the overlap area along a
single primary dimension, either horizontally or vertically, making it particularly suitable
for linear image Stitching (Zeng et al. [2014]). By transforming the seam finding problem to
a shortest path finding problem, the dynamic programming algorithm uses an energy map
as input and gives the results of the path with the lowest accumulating energy. As dynamic
programming typically works on the energy map of 2-dimensional image, which is usually
a gray-scale image, the complexity is O(W × H). The W and H are the width and height of
the overlap image.

Image Blending and Interpolation

Blending is the process by which the pixel values are mixed between two or more im-
ages. Linear Blending, also known as cross-dissolve, is a simple and widely applied method
in video editing. It generates the new image by adjusting the opacity of one image over
the other. The formula below describes the simple scenario when two images are linearly
blended.

Iblend = α · I1 + (1− α) · I2 (2.18)

I1 and I2 are the pixel values of the two images and Iblend represents the blended image. α
is the weight factor and its value is between 0 and 1, which controls the contribution of each
image and produces a gradual transition between the two images.

When the two images to blend have significant differences in color, texture, or brightness,
an obvious seam or ghosting can occur. The Laplacian pyramid blend decomposes the im-
ages into multiple frequency levels, creates Laplacian pyramids for each image based on
smoothing levels, and blends the pyramids at each level (Burt and Adelson [1983]). This
will fill the invalid and edge pixels with neighboring values and minimizes abrupt transi-
tions. The initial pyramids Blending operates in the intensity domain, which can struggle
with global inconsistencies, such as differences in illumination. Pyramids that blend in the
gradient domain minimize the seam by optimizing the Blending of image gradients, and
have a significantly improved performance (Levin et al. [2004]). Gradient domain Blending
can also be applied to other classic Blending methods such as feathering.
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Image interpolation is another technique that is similar and related to image Blending in
image processing. Interpolation refers to the calculation of intermediate pixel coordinates or
values between known positions (Beier and Neely [1992]). Thus, it not only changes the pixel
value but also changes the shape of the images. The implementation of Warping mentioned
above also contains the interpolation processing. After operations like perspective Warping
or more complex non-linear transformations, the pixel coordinates often become fractional.
Thus, interpolation is required to determine the pixel intensities at these fractional positions
to ensure visual smoothness and continuity. Common interpolation methods in Warping
operation include nearest neighbor interpolation, bilinear interpolation, and bicubic inter-
polation (OpenCV [2024]).

To smoothly transfer from the original image to the warped image, we can also use lin-
ear interpolation to calculate the intermediate images in the Morphing process. The basic
linear interpolation of images can also be written mathematically with a weight factor α,
which controls the weighted linear combination of the original coordinates (px, py) and
their corresponding coordinates (xwarped, ywarped) in the warped images. The interpolation
equations for calculating the intermediate positions (xinbetween, yinbetween) for each pixel are
as follows:

xinbetween = (1− α)× px + α× xwarped

yinbetween = (1− α)× py + α× ywarped
(2.19)

Here, α ranges from 0 to 1, indicating the degree of transition from the original image to
the warped image. When α equals 0, the pixels remain in their initial positions, and when
α is 1, the pixels reach their fully warped positions. By controlling the variation of α, a
smooth variation between the original image and the warp image can be achieved through
animation or user interface.
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3.1. Oblique Aerial Image Visualization Platforms

With an increasing number of oblique images made today and the growing need to view
and analyze those data, several platforms have emerged to visualize and interact with these
images. Here are the features and functions of some existing platforms.

• United States Geological Survey (USGS) Oblique Aerial Photography Viewer (U.S.
Geological Survey [2018]): It is a web-based platform designed to provide access to
oblique aerial imagery captured across the United States. As an interactive viewer, it
allows users to explore oblique aerial images within a map interface as a reference to
the location where the images are taken, and it is equipped with basic functions for
the user to explore with panning and zooming (see figure 3.1).

Figure 3.1.: User Interface of USGS Oblique Aerial Photography Viewer

In addition, as a research platform, it offers users access to the meta data and easy
download of the images. However, this platform stopped updating after 2018 and it
does not stitch or perform any other process on the images for a smoother visualization
experience.

• Bing Maps Bird’s Eye (Bing Maps Team [2022]): Bing Maps released high-resolution
oblique aerial images as well as nadir satellite images on its online map platform (see
figure 3.2). They get oblique aerial images georeferred to the basic map and present
oblique images when the mouse is moved over the nadir images of the corresponding
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areas. This platform offers a very continuous experience when switching from a nadir
image to its corresponding oblique image. However, it does not create a smooth tran-
sition between oblique images. Each time the user can only browse one oblique image.
Also, as a platform for the general public, it does not have functions to make precise
measurements from the images.

Figure 3.2.: Nadir and oblique images of the same area around Holland Spoor train station
in Den Haag, source: Bing Maps

• XMAP: is a cloud-based GIS platform and the visualization of oblique aerial images is
one of its modules. XMAP has built-in cascade and height measurement tools, which
can apply accurate measurements for multiple scenarios. In addition, it can change the
orientation of the oblique images taken in the same area. Like most of oblique aerial
image visualization platforms, it aligns every oblique image with the base map. Al-
though with a few seconds of delay, XMAP still realizes a relatively smooth transition
from one oblique image to another. As a commercial software and platform, XMAP
is not open source, so we cannot quantitatively assess its image transition or stitch
quality.

3.2. Existing Softwares for Image Stitching

As image Stitching is widely used in photography, many existing softwares have devel-
oped the Stitching functions with a GUI and comprehensive pipelines. By just inputting
two or more overlapped images into those GUI stitchers without pre-processing or precise
camera parameters, users can obtain an integrated panorama. Some slight adjustments and
fine-tuning can also be performed through those GUI to make the outcome better in visu-
alization. The process of those image Stitching GUI is not very transparent because they
only provide static stitched images without the intermediate parameters like the Homogra-
phy matrix. Thus, these softwares cannot be directly used in this thesis project to generate
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dynamic and measurable stitched images. However, studying the features and comparing
the outcomes of them can still help to better understand the advantages and disadvantages
between different stitching-related algorithms as well as users’ needs. Here introduces four
of the most commonly used Stitching softwares and their Stitching outcomes. Comparisons
between the stitched results from existing softwares and this thesis project will be made in
Chapter 6.

• Adobe Photoshop (Adobe Inc. [2025]) : is a professional photo editing software that
also supports image Stitching through its ’Photomerge’ feature. It allows users to
combine multiple photos into panoramas with control over blending, layout, and per-
spective correction. It is not open-source software and a paid license is required for
use.

• PTGui (New House Internet Services B.V. [2025]): is a commercial panorama Stitch-
ing software. It is a complete pipeline for image Stitching with different purpose like
creating spherical panoramas, Stitching large number of pictures into a huge integrate
panorama, and projection image into a small planet.

• AutoStitch(Brown [2025]): is an automatic panorama Stitching tool developed as a
research project. It integrates the Feature point finding and warping technique to
stitch images together without requiring manual input or prior knowledge of camera
parameters. Although Autostitch was originally developed as a research prototype
and is freely available for noncommercial use, the source code has not been publicly
released.

• Hugin(Hugin Project [2025]): is an open source panorama photo stitcher. It offers
a powerful and flexible interface that supports manual and automatic control points,
lens calibration, and various projection types for creating high-quality stitched images
from overlapping photos. Since it is mainly used for research or art purposes, it is not
very optimized in running speed.

3.3. Measurement on Oblique Aerial Images

One of the motivations for photogrammetry is to make precise measurements from pho-
tographs instead of field work on the spot. Measurement of oblique aerial images is an
efficient way of landscape survey, especially for areas that are difficult for humans and in-
struments to directly access. In addition, it can save lots of time and money comparing to
the on-site measurements.

The measurement from oblique aerial images is mainly realized by applying the reconstruc-
tion technique in photogrammetry. After constructing the projection matrix for the camera
(M), the 3D coordinates of the corresponding 2D points can be calculated using triangula-
tion methods. Figure 3.3 shows how the 3D coordinates align with the 2D image points in
different image planes. The nonlinear triangulation method is mathematically used to solve
a minimization problem and is widely used in the real world.

min
P̂

∥∥MX̂− x
∥∥2

+
∥∥M′X̂− x′

∥∥2 (3.1)
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Figure 3.3.: Correspoinding points in 2D and 3D for reconstruction (3D Geoinformation, TU
Delft [2025])

3.1 represents the sum of errors between the reprojected points and their corresponding
points in two images of different views. The 3D point (X) can be estimated by finding the
best least-squares estimation of X̂ in both images. In practice, the sum of the reprojection
error can be calculated from more than two images which have overlap areas.

Omnibase has already realized the measurement from oblique aerial images by using mul-
tiview overlapped images. Once a user clicked on a point on an image, it will detect other
images which have the same point in real time to calculate the 3D terrain coordinates of the
certain point. Then the distances between different points are calculated based on those 3D
coordinates to measure the lengths or areas of the real-world objects. Figure 3.4 shows the
measurement applied in Omnibase to measure the width of a standard football field. The
left image is where the user is doing the measurement, and the right windows show the
same point in other images. The top right shows the 3D coordinate of the current measur-
ing point. The regulated width of a standard football field is 68 meters, and the Omnibase
measurement result is 68.712 meters, which is a relatively accurate result.
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Figure 3.4.: Measurement on unwarped oblique aerial images in Omnibase
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This chapter gives an overview of the process of dynamic and measurable image Stitching.
Figure 4.1 presents a general methodology and a processing flow chart of the dynamic
Stitching program. The whole process can be divided into two main stages: preprocessing
and image Morphing, and these two parts are introduced in Sections 4.1 and 4.2. The pre-
calculation and adjustment of Homography matrix will be included in Section 4.2. The
measurement is introduced as a separate part in Section 4.3.

Figure 4.1.: General methodology flowchart
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4.1. Preprocessing

Since Geodelta has applied the DISK-LightGlue algorithm to find the tie points and the results
are already stored in Phoxy database, the preprocessing is mainly to query and get the valid
image pairs and matching points from the image files and database.

4.1.1. Optical Aerial Oblique Imagery

The current dataset of this thesis project covers the municipality of Utrecht. The images
were taken in 2024 with 45 degrees from four directions down to the earth’s surface by a
survey company, Kavel 10. The approximate positions of the images are recorded with the
Global Navigation Satellite System (GNSS) system, and then a bundle-block adjustment is
performed to obtain the adjusted positions. The images were taken with 50 meters interval
on the same flightline, and the distance between flightline is around 150 meters. Some
images that largely consist of water are labeled as unsuitable mapping due to the difficulty
of finding the connection ground points for accurate adjustment. Table 4.1 shows some
essential parameters of the images and cameras in this data set. In practice, the size and
flight height of every image slightly varies, the table below only shows an average value of
these two parameters. According to the flight height, focal length and sensor pixel size in
the table, gsd! ( gsd!) is around 1.75 cm around the principal point.

Image Width 10652(pixels)
Image Height 14204(pixels)
Size on Disk ∼75 (MB)
Focal Length 108 (mm)
Flight Height ∼420 (m)
Sensor Width 40.05152 (mm)
Sensor Height 53.40704 (mm)

Sensor Pixel Width 3.76 (µm)
Sensor Pixel Height 3.76 (µm)

Table 4.1.: General image properties and sensor parameters of the used data set

The lens distortion for this data set is mainly a radial distortion (see equation 4.1, r is the
pixel distance from the principal point), which is primarily caused by imperfections in the
lens design. The radial lens distortion coefficients are shown in the table 4.2. Comparing
with universal cameras (Choi and Kim [2021]) in daily life, the professional cameras using to
generate the aerial images have relatively low distortion. Since lens distortion does not have
a significant influence on the Stitching results, lens distortion calibration is not included in
preprocessing.

rd = r(1 + k1r2 + k2r4 + k3r6) (4.1)
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Coefficient Value (Approximate)
k1 −5× 10−6

k2 9.5× 10−10

k3 ±3× 10−13

Table 4.2.: Estimated Radial Distortion Coefficients from Calibration for a camera

4.1.2. Phoxy Database

Phoxy is a platform now under development by Geodelta to show the Tie-points between
two images (see figure 2.3). However, Phoxy is still in development, especially for its in-
terface. In this thesis project, the Phoxy database and some subsets of it are mainly used.
Phoxy database provides the records including the interior and exterior camera parameters
of every image and the Tie-points coordinates.

Figure 4.2.: Database structure of used Phoxy tables in this thesis

Figure 4.2 shows the tables and their relationships in the database that are used in this thesis.
The following gives a more detailed introduction to the tables used:

• Interiors: Records of interior parameters. The images taken with the same camera
share the same record in the interior tables.

• Images: Basic information about every image. Unique IDs are created randomly.

• ImagePairs: Matched pairs of overlapped images. Each pair record has a unique pair
Id and Ids of two matched images.

• Features: Detected key points in a single image. The pixel coordinates of every feature
on the image plane are recorded. The same feature that is detected on more than three
images has a FeatureLinkId.

• FeatureMatches: Matched pairs of Tie-points. If the pair of points are also detected
in other images, the FeatureLinkId record is not null. The score given by LightGlue is
also recorded for matched features. The higher the score, the more convincing the pair
of matched points is.
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• FeatureLinks: Linked key-point record. Since the point is detected by more than
three images, it’s terrain coordinate can be precisely calculated with the triangulation
method in photogrammetry.

The original Phoxy database of Utrecht contains 2860 image records, 144378 image pairs, and
more than two millions of feature matchings and features. Subsets of the original database
are made for different experiments and the basic structure of the database is maintained.

4.1.3. Data Cleaning and Resampling

Despite query and data retrieval, data cleaning is also important for Tie-points because of
errors in detection and matching points. In principle, only the key points with FeaturelinkId
will be selected as input points for image warp due to high confidence. However, for some
image pairs that don’t have enough Tie-points with Featurelinks, the score of Tie-points is
also set as a selection standard. If the key point has a score greater than 0.8, it will also be
selected as a valid input for future steps.

Because of the scene features, some of the images have detected key points with uneven
distribution (see figure 4.3). These unevenly distributed points within the overlap area will
lead to errors in Homography matrix calculation.

Figure 4.3.: Uneven distribution of key points in overlapped area

In figure 4.3, the upper left buildings have too many detected key points, which is unnec-
essary. Thus, resampling the points to decrease the weights of upper left corner can be a
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solution to this problem. K-means clustering algorithm is used to detect different group-
ing of points. For each group, the central point is selected as the representative point for
Homography matrix fitting. The resampling processing not only reduces the influence of
uneven distribution but also decreases the number of input points to Homography matrix
fitting and improves the runtime performance. Collinearity checking is also applied to grant
proper Homography matrix generation in extreme cases. Detailed implementation will be
introduced in Chapter 5.

4.2. Image Stitching

4.2.1. Image Warp and Transformation

As mentioned in Chapter 2, parametric Warping has multiple advantages, including its
low computation cost and explicit expression. Although parametric Warping can also be
applied with mesh-based techniques to achieve local Warping (Efros [2016]), the oblique
aerial images usually only have global perspective distortion caused by viewing angels and
camera movements. Thus, using global Warping with one single Homography matrix can
already achieve a good Stitching result which has minimal errors like duplicate or broken
objects and keeps all the edges straight. In addition, the simplicity of the single homography
transformation ensures fast computation performance and low memory costs, which makes
it possible for dynamical or even real-time Stitching. Global transformation is used to warp
the image to stitch to the reference image.

In Chapter 2, two different global Warping methods (2D and 3D) are introduced. Although
they have different physical meanings, they still give the transformation expressions in the
same mathematical form, a 3 × 3 Homography matrix. The following describes how to
generate the Homography matrix with these two methods:

• 2D: All the valid matching point pairs are input into the a planar projective transfor-
mation solver to estimate the Homography matrix. The Open Source Computer Vision
Library (OpenCV) findHomography function (OpenCV [2024]) is chosen to solve the
Homography matrix.

• 3D: The Homography matrix can be formed directly by the camera parameters. Equa-
tion 4.2 shows the projection matrix (Hi) from the ground to the image. Thus, the
inverse matrix (H−1

i ) is the projection matrix from the image to the ground. The pro-
jection matrix from image1 to image2 can be formed by multiplying the project matrix
to image1 plane to ground (H−1

1 ) and the projection matrix from the ground to the
image2 plane (H2). H12 in Equation 4.3 is the projection matrix from image1 to im-
age2. Here, K ∈ R3×3 is the intrinsic matrix of the camera, Ri ∈ R3×3 is the rotation
matrix representing the orientation of the camera, and ti ∈ R3 is the translation vector
representing the position of the camera in space.

Hi = K
[

R[1:2]
i ti

]
∈ R3×3, only using first two columns of Ri. (4.2)

H12 = H2 · H−1
1 =

(
K
[

R[1:2]
2 t2

])
·
(

K
[

R[1:2]
1 t1

])−1
(4.3)
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Although the 3D method has the advantage that camera movement is considered, lack of
consideration in terrain elevation can still cause errors to this method. Thus, the points
warped by H12 will be entered again into the projective transformation solver with their
matching points to obtain a Homography matrix H′. The final transformation matrix is
calculated by equation 4.4:

H = H12 · H′ (4.4)

The homography calculated by the Tie-points from the matching point pairs will be stored
in the same table as the matched image pair results. When Stitching processing starts, the
corresponding Homography matrix will be loaded as the best pair matching is selected.
Thus, the time for homography calculation is saved for the dynamical Stitching process.
Also, by pre-calculation of Homography matrix, the mismatched pairs can be detected and
repaired to avoid bugs and large errors in the dynamical Stitching process.

Despite the homography transformation, there are two other kinds of transformations that
occur in the image Stitching process, the scale and the translation. Because the size of the
raw oblique images is very large (4.1), it is more efficient to scale them to achieve good real-
time performance. The Homography matrix is calculated on the basis of the original image,
it cannot be directly applied to the scaled images. Scaling to the Homography matrix is a
must if the images are scaled. The matrix 4.5 is the scale matrix and s is the scale factor. The
Homography matrix is scaled by equation 4.6.

S =

s 0 0
0 s 0
0 0 1

 (4.5)

Hs = S · H · S−1 (4.6)

In the warp transformation, at least one image is selected as the reference image, and other
images are warped to stitch to it. Since the image coordinate system sets the upper left corner
as the original coordinate, part of the warped image on the left side of the reference image
will have negative coordinates. The mainstream computer vision and matrix computation
libraries like OpenCV, Scikit-image, and Tensorflow do not support the negative index. Thus,
Stitching the image on the left or up side, the negative direction of x and y axis respectively,
needs translation of the reference image’s coordinate system to give enough space to the left
and up images (see figure 4.4).
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Figure 4.4.: Positive translation in both x and y axis of the reference image

The translation matrix can be written as matrix 4.7. tx and ty are the translations needed
from the x and y axes. In most cases, both scale and translation are applied and 4.8 shows
the calculation of the final Homography matrix.

T =

1 0 tx
0 1 ty
0 0 1

 (4.7)

H f inal = T · S · H · S−1 (4.8)

4.2.2. Optimal Seam Finding

In this project, the dynamic programming algorithm is chosen for optimal seam finding. The
algorithm operates by first calculating a cost or energy function based on the differences of
pixels in overlapping regions. This cost typically reflects intensity or gradient differences,
which quantify visual disparity at potential seam positions. Then, the algorithm will ini-
tialize two matrices that have the same shape as the energy map, the cost matrix, and the
backtrack matrix (see figure 4.5). The cost will be computed and accumulated from one
boundary of the overlapping region to the opposite side. At each pixel location, the algo-
rithm evaluates the minimal cumulative cost of adjacent pixels, effectively tracing the path of
the least visual difference. After filling the cumulative cost matrix, the algorithm identifies
the optimal seam by following backward from the position of the minimum accumulated
cost at the opposite boundary, following the path that contributed to this minimal total.
Consequently, this produces an optimal seam with minimal cumulative visual discrepancy,
ensuring a smooth transition between stitched images.

Figure 4.5 shows the input energy map and the calculated result of the cost matrix and
the backtrack matrix in a horizontal seam carving process. The energy map (left matrix)
represents the importance or disruption cost per pixel, typically calculated using an image
gradient magnitude. High values correspond to visually significant regions, while low val-
ues indicate visually uniform areas suitable for removal. Each element E(i, j) denotes the
energy of pixel in row i, column j. The NaN value in the input will be considered infinite
in the cost calculation to avoid having to go through those pixels. The final optimal seam is
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labeled blue in the backtrack matrix. The cost matrix (middle) stores the cumulative min-
imum energy required to reach each pixel from the top row. This matrix is initialized by
copying the first row of the energy map, since no previous pixels influence it. For all other
pixels (i, j), the cumulative cost M(i, j) is computed as:

M(i, j) = E(i, j) + min(M(i + 1, j− 1), M(i + 1, j), M(i + 1, j + 1))

where only valid neighboring positions are considered. If a value is inf, it typically indicates
an impassable or undefined path due to NaN in the energy map.

The red arrows on the energy map (left image in Figure 4.5) visualize this recursive min-
imization process, showing how the minimum path propagates down the matrix. While
the cost matrix(C) stores the minimum cumulative energy required to reach each pixel, the
backtrack matrix(B) preserves the origin of that minimal cost, allowing for seam path re-
construction via backward traversal. For the horizontal seam, the backtrack matrix stores
the row indices of the element in the j − 1 column in the element j column. Here, in the
example of figure 4.5, the minimum cumulative energy pixel is at C(2, 4), and the minimum
value is 16. The recorded front-row indice at B(2, 4) is 3, which means the last energy pixel
is at C(3, 3). Repetition of this backtrack processing will finally find the optimal seam in the
image, which is labeled blue in the backtrack matrix of Figure 4.5.

Figure 4.5.: Left: input energy map; middle: cost matrix; right: backtrack matrix.

4.2.3. Interpolation

The goal of interpolation is to generate the intermediate images between the orginal im-
ages and the warped images to achieve a smooth transformation. Since the Homography
matrix is a nonlinear, reversible, singular matrix, directly interpolation between different
transformation matrices is a practical solution to generate the in-between image.
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Figure 4.6.: Example of a blend pixel generated by the original pixel and the warped pixel

Figure 4.6 shows an example of where the interpolated pixel should be. The interpolation
process calculates the coordinates of every blend pixel and remaps these pixel to the co-
ordinate. Equation 4.10 presents the calculation of the pixel coordinates of a simple linear
interpolation.

blendX = (1− α)×OriginalX + α× warpX, (4.9)
blendY = (1− α)×OriginalY + α× warpY (4.10)

4.3. Measurement Transformation

As mentioned in Chapter 3, Geodelta has developed an online measurement tool for aerial
oblique images based on a nonlinear triangulation method. However, the code for the mea-
suring tool is embedded in the back-end code of Omnibase instead of acting as an indepen-
dent application programming interface (API), so it is hard to integrate the current Warping
or Stitching images into the measurement system directly. The main goal of this part is to
prove the measurability of the warped and stitched image.

To measure on the warped image, there is just one more step to do than measuring on the
original image, that is, finding the original image pixel coordinates out of the warped ones.
Since the input Tie-points are not collinear, the Homography matrix must be full-rank and
invertable (Bernstein [2009]). Thus, simply applying the inverse Homography matrix (H−1)
to the point clicked by the user on the warped images, the coordinates of the original points
on the unwarped image can be calculated. Then the original coordinates can be put into the
existing triangulation pipeline for measuring.
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This chapter presents the implementation details of the interactive image Warping system
using EmguCV and C#. It begins with the architectural layout of the system and design
rationale behind key components. Furthermore, the chapter illustrates the step-by-step inte-
gration of user interactions, matrix operations, and rendering processes, emphasizing both
technical and visual accuracy. Practical challenges encountered during development are also
addressed, along with the solutions adopted. This chapter aims to provide a comprehensive
understanding of the implementation mechanics, laying the groundwork for evaluation in
the subsequent section.

5.1. Preprocessing

5.1.1. Query Operations

SQLite is a lightweight, serverless, self-contained Structured Query Language (SQL) database
engine (SQLite Consortium [2025]). Unlike traditional database systems that require a sep-
arate server process, SQLite integrates directly into applications, using simple function calls
to manage and query data. Thus, SQLite is a simple and efficient data management tool for
this project.

To optimize query speed, indexes are created for every table in the database based on the
primary keys and foreign keys. In the following, the query process is introduced step by
step.

• Read the initial image: The whole query process starts with the table Image to read
the parameters and the image file of the center reference image.

• Read the neighbor image belt: The images that are valid to stitch to the current center
images have to satisfy two conditions. First, it is in the same sampling row or column
as the center image. Second, it has the same direction of view as the center image. To
filter qualified images, the optical center coordinates and orientation parameters are
taken into consideration.
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Figure 5.1.: Selected images on the image belt for stitching to the selected image in white
frame

For images in the same column or row, the distances between their X or Y coordinates
are less than 10 meters. So, the condition for images with qualified location in the
column or row is:

CenterImage.X− 10 < SelectedImage.X < CenterImage.X + 10

or

CenterImage.Y− 10 < SelectedImage.Y < CenterImage.Y + 10

As images with the location on the same row or column are found, the next step is
to make sure that the image is looking from the same direction to the ground. The
camera rotation parameters, also called the orientation parameters, are recorded for
every image. Since this is a dataset with images taken by 45◦ angle from a Maltese-
cross camera system (see figure 2.1), there are four possible combination of ω and ϕ
for x and y axis orientation.

Orientation ω ϕ
1 -45 0
2 45 0
3 0 45
4 0 -45

Table 5.1.: Four possible combination of ω and ϕ parameters (unit: degree)

All the images are reclassified into those four orientation categories for the view direc-
tion checking in queries.

• Select the best image pairs to stitch: Although the closest image to the center image
on the image belt is most likely to be the best match to stitch, there are sometimes not
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enough Tie-points detected or no point between the closest pairs due to errors in the
Tie-point matching results. However, the closest image is still most likely to be the best
image for Stitching. Thus, the images on the image belt are sorted by the distance to
the center image from shortest to longest for a loop query. The pseudo-code of the best
pair selection is shown in 5.1.

Algorithm 5.1: GetBestPair Algorithm
Input: Image belt B, image info I, database connection C
Output: Valid image pairs P

1 Initialize empty list P ;
2 foreach image b in B do
3 Retrieve image pair p for (I0, b) from C ;
4 if p exists and has > 10 feature matches then
5 Create new pair r with correct A, B order ;
6 Append r to P ;

7 return P

• Get the Tie-points: After deciding on the image pair to stitch, the record for Tie-point
matching results can be retrieved from table FeatureMatch which also records the Id
for the corresponding points on two images. By transferring the Ids into a list, SQLite
will execute a very fast batch query to get the coordinates of the Tie-points on both
image planes.

5.1.2. Tie-point Data Cleaning and resample

As mentioned in chapter 2, the mismatched pairs and uneven distribution of point pairs may
influence the final homography calculation. The cleaning step is applied while querying for
the feature-match records.

Feature links consist of three or more matched features that have been forward-intersected
to create a ground object point. Thus, Feature points that are part of a feature link are thus
considered reliable, and their field of ”Score” is higher than 0.8.

To get enough reliable point pairs, a threshold of a minimum of point pairs is set. If the
number of points with ”FeatureLink” is greater than the threshold, then the point pair list
contains only the linked points. If there are not enough linked points, the point pair list will
get other point pairs with high matching score until the number of point pairs in the list is
greater than the threshold. Here, the threshold of points is set to 100 according to the results
of the geometric accuracy experiment in Chapter 6.

To solve the uneven distribution problem, the k-means clustering algorithm is applied to
divide the Feature points into different clusters and select the center point as the final input.
The pseudocode for the clustering of K-means is shown in 5.1 and Figure 6.11 visualizes the
selection result. The clustering number is set to 20.

39



5. Implementation

Figure 5.2.: K-means clustering and selection results of an example point pair dataset

Algorithm 5.2: Cluster-Based Point Selection
Input: Point sets PA, PB; number of clusters k
Output: Selected points P′A, P′B

1 Apply KMeans clustering with k clusters on PA ;
2 Initialize empty index list I ;
3 for i← 0 to k− 1 do
4 Find cluster points Ci where label = i ;
5 Compute distances to cluster center Ccenter

i ;
6 Let j be index of point in Ci closest to Ccenter

i ;
7 Append j to I ;

8 Set P′A ← PA[I], P′B ← PB[I] ;
9 Visualize clustering and selected points ;

10 return P′A, P′B

Although not encountered in practice, there is still the possibility that in some extreme
cases the selected 20 points are collinear. Collinearity checking will be done applied before
input those points into Homography matrix construction. If those points are collinear, the
clustering progress will restart, and the selection condition from each clustering will be two
random points in every cluster in a clustering will be taken until the group of points passes
the collinearity checking (see Figure 5.3). If after 1000 iterations the points are still collinear,
then the program will try to input all points to collinearity checking. If they are still collinear,
the program throws warnings.
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Figure 5.3.: Left: Collinear points selected (marked in red) under clustering-center condition.
Right: Non-collinear points selected by random iterations. Note: This is an artifically
generated example instead of real data

5.2. Image Stitching

Most of the image processing is performed by the OpenCV library (OpenCV [2025]). OpenCV
is an open-source software library primarily aimed at real-time computer vision and image
processing tasks. OpenCV provides a comprehensive collection of optimized algorithms and
functions written in C/C++, with interfaces available for languages such as Python and
Java. EmguCV is a cross-platform .NET wrapper for the OpenCV library, allowing the use
of OpenCV functions in.NET languages such as C#. The following context mainly introduces
the functions referring to OpenCV library and would mention its corresponding function in
Emgu CV as the project is done mainly with C#.

5.2.1. Image Warp

After the data is cleaned, the tie points are entered into the OpenCV findHomography
function (CvInvoke.FindHomography in EmguCV) to calculate the Homography matrix
(OpenCV [2024]). A RANSAC algorithm (Fischler and Bolles [1981]) is used to minimize the
influence of outliers. It repeatedly selects a random subset of point pairs from the tTie-point
dataset to estimate a tentative homography. Then, it projects points using the estimated ho-
mography and checks which point pairs agree within a certain error threshold (inliers). The
default threshold here set by OpenCV is 3. After many iterations, the model with the highest
number of inliers is selected as the final homography.

With the calculated Homography matrix, the warpPerspective function of OpenCV (CvIn-
voke.WarpPerspective in EmguCV) is used to generate the warped image (OpenCV [2024]).
This function integrates two main operations, namely, calculating the warped coordinates
(see Equation 5.1) and interpolating. The default interpolation method is bilinear interpola-
tion.

dst(x, y) = src
(

H11x + H12y + H13

H31x + H32y + H33
,

H21x + H22y + H23

H31x + H32y + H33

)
(5.1)
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For the 3D warp method, as shown in Chapter 4, it can consider camera movement without
the influence of the terrain. In practice, the camera parameters, especially the transformation
parameters, and the spatial position of the camera center when taking the image are recorded
in geographic coordinates. However, the cameras are facing four different directions, and
the axis of the image coordinate may not be in the same orientation as the geographic
coordinates. Thus, before the projection, rotating the image and Tie-points to make the
coordinate system in the same direction as the geographic coordination system are must to
solve the orientation issues.

The 3D warp method only implies as an experiment in Python code, and the final C# demo
only includes the 2D warp considering the balance between accuracy and run-time. The
comparison between those two Warping methods is shown in Chapter 6. Thus, here the
implementation of the 2D methods is mainly introduced. The implementation with 3D
methods is also based on this and the camera projection matrix is formed based on the
query results of camera parameters.

5.2.2. Optimal Seam Finding

The Optimal Seam Finder algorithm employs dynamic programming to efficiently identify a
seam path with the minimum cumulative energy through an energy map, which represents
pixel discrepancies or gradients.

The energy map is generated by the grayscale image of the overlapped area. To improve the
run-time and get a smoother seam, the input image is downsampled by a factor of 20, which
means the pixel number of both length and width is divided by 20 from that of the original
image.

A Sobel operator (Sobel [2014]) is applied to the image to calculate the energy map. The
Sobel operator detects gradients in an image; specifically, it calculates the first-order deriva-
tives in the horizontal (x) and vertical (y) directions. When the value calculated by the Sobel
operator is high, it indicates that the area could be edges or full of texture details, where the
seam should avoid being blown. Thus, these areas are of high value on the energy map (see
Figure 5.4). In particular, the areas with NaN values in the image are set to infinite on the
energy map.
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5.2. Image Stitching

Figure 5.4.: Example of energy map of between certain images

As described in Chapter 4 and Figure 4.5, the optimal seam is calculated based on the energy
map with the dynamic programming algorithm. Pseudocode 3 shows the implementation of
the algorithm in the horizontal direction. The direction of the seam is decided by comparing
the aspect ratio of the overlapped area before the seam calculation. If the width of the
overlapped area is longer than its height, the horizontal seam is applied. Otherwise, it will
try to find a vertical seam. The vertical seam finding analogy is basically the same as the
horizontal one except for the replacement of row indices by column indices. Since the energy
map is calculated by a downsampled image, the final seam is also resampled to match the
original image and generate the mask.
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Algorithm 5.3: Seam Finding via Dynamic Programming in Horizontal Direction
Input: Energy map E of size H ×W
Output: Minimum-cost horizontal seam path S and its cost C

1 Convert E to a NumPy array of type object;
2 Initialize M← matrix of size H ×W with values + ∞;
3 Initialize B← matrix of size H ×W with values − 1;
4 for r ← 0 to H − 1 do
5 if E[r, 0] is valid then
6 M[r, 0]← E[r, 0];

7 for c← 1 to W − 1 do
8 for r ← 0 to H − 1 do
9 if E[r, c] is invalid then

10 continue;

11 best cost← M[r, c− 1], best row← r;
12 if r > 0 and M[r− 1, c− 1] < best cost then
13 best cost← M[r− 1, c− 1], best row← r− 1;

14 if r < H − 1 and M[r + 1, c− 1] < best cost then
15 best cost← M[r + 1, c− 1], best row← r + 1;

16 if best cost < ∞ then
17 M[r, c]← E[r, c] + best cost;
18 B[r, c]← best row;

19 min cost← ∞, min row← −1;
20 for r ← 0 to H − 1 do
21 if M[r, W − 1] < min cost then
22 min cost← M[r, W − 1], min row← r;

23 if min row = −1 then
24 return (∅, ∞);

25 S ← [], curr ← min row;
26 for c←W − 1 to 0 −1 do
27 Append (curr, c) to S ;
28 curr ← B[curr, c];
29 if curr < 0 then
30 break;

31 Reverse S ;
32 return (S , min cost);

5.2.3. Dynamic Interpolation

The dynamic interpolation algorithm is designed to provide the user with a smooth transfor-
mation between images. Algorithm 4 shows the dynamic interpolation process to continu-
ously warp an image with mouse-drag control. In an ideal output, this algorithm should be
applied to three images at the same time. However, due to the limitation of time and the dif-
ficulties in calculating the post-warp Homography matrix, the final demo does not include
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the implementation of this interpolation algorithm. However, the interpolation algorithm is
still documented for future software development.

Algorithm 5.4: Drag-based Interpolation Algorithm

1 Input: Original image I, homographies H21, H23, blending factor α
2 Output: Controllable warped image displayed via pictureBox w← width(I) + 800
3 h← height(I)
4 maxOffset← 200

5 if α < 0.5 then interpH← InterpolateMatrix(H21, Id, 2α)
6 tx ← (1− 2α) ·maxOffset
7 else interpH← InterpolateMatrix(Id, H23, 2(α− 0.5))
8 tx ← −2(α− 0.5) ·maxOffset
9 T ← CreateTranslation(tx, 0)

10 centerT← CreateTranslation
(

width(I)−w
2 , 0

)
11 temp← T · interpH
12 totalH← centerT · temp

13 foreach y ∈ [0, h) in parallel do
14 for x ← 0 to w− 1 do
15 denom← H2,0x + H2,1y + H2,2
16 xx ← (H0,0x + H0,1y + H0,2)/denom
17 yy← (H1,0x + H1,1y + H1,2)/denom
18 mapX[y, x]← xx
19 mapY[y, x]← yy

20 displayImage← Remap(I, mapX, mapY)
21 pictureBox.Image← ToBitmap(displayImage)

5.3. Runtime Optimization

Figure 4.1 represents the basic process of the dynamic image Stitching program. However,
if progress is made simply with a single thread following the arrows in Figure 4.1, the real-
time performance will be poor due to the waste of computational resources. Thus, run-time
optimization has been applied to improve real-time performance mainly by using parallel
computation and precalculation. The runtime optimization and the demo run with the
original images scaled with a factor of 0.2 to achieve a balance between visual effects and
runtime performance.

Pre-calculation of the scaled image and Homography matrix can save much computation
time according to the results in Chapter 6. In addition, by parallelizing synchronous pro-
cesses, real-time Stitching performance is also improved. Figure 5.5 shows the optimized
threads in the dynamic Stitching demo. Image loading and processing are performed in
parallel to improve runtime performance.

45



5. Implementation

Figure 5.5.: Threads in real-time image stitching

5.4. Reprojection for Measurements

The inverse Homography matrix is calculated using the CvInvoke.Invert() function in C#
with EmguCV. Because the pixel coordinates are always integers, the reprojected points by
the inverse Homography matrix have to be rounded.
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6.1. Visualization of Stitched Images

In this chapter, static stitched images in different intersecting scenarios are shown in 6.1.1.
Since the original aerial images are very large in file size, the static stitched images here
are all downsampled. To show the details of the stitched image, some zoom-in batches are
cut and shown in 6.1.2. Comparison between the result stitched by this project and some
existing software are shown in 6.1.3. This part mainly shows the visualization result of the
stitched images and the geometric accuracy with quantitative calculation are shown in 6.2.

6.1.1. Overview of Static Stitched Images

Figure 6.1.: Three stitched oblique aerial images in the same flightline without optimal seam
in a GUI view
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Figure 6.2.: Three stitched oblique aerial images in the same flightline with optimal seams
in a GUI view (Scenario 1)

Figures 6.1 and 6.2 show the same group of images. The results in Figure 6.1 confirm the
effectiveness of the Homography matrix in aligning images with high geomatric precision.
Figure 6.2 applied the optimal seam, where the seam in 6.2 can still be detected by human
eyes, but it is not as obvious as the seam in 6.1. The seam adapts to image content, preserv-
ing high-frequency features such as edges while avoiding high-gradient areas that would
otherwise be visually disruptive. This confirms that our approach achieves high-quality
Stitching in terms of both visual coherence and geometric alignment.

This part also shows the images stitched in four different intersection scenarios. Table 6.1
gives the description and intersection rate of the image pairs shown in Figure 6.2, 6.3, 6.4,
and 6.5, respectively. The intersection rate is calculated based on the pixel number of warped
images divided by the pixel number of the intersection area after Warping.

Stitching Scenario Scenario Description Intersection Rate (%)
1 Same flightline + High intersection 62.3
2 Same flightline + Low intersection 19.1
3 Across flightline + Same Column 50.9
4 Across flightline + Diagonal Intersection 33.3

Table 6.1.: Stitching scenarios and the intersection information for the shown image pairs
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6.1. Visualization of Stitched Images

Figure 6.3.: Two oblique aerial images in the same flightline with low intersection rate
stitched (Scenario 2)

Figure 6.4.: Two oblique aerial images across the flightline stitched (Scenario 3)
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Figure 6.5.: Two diagonal intersected oblique aerial images stitched (Scenario 4)

6.1.2. Details of Static Stitched Images

This part mainly shows the details of the stitched images, especially in the seam and in-
tersected areas. Figure 6.6 mainly shows the details on the optimal seam and Figure 6.7
compares the details on the seam of directly overlaid results generated by different meth-
ods.

Figure 6.6 shows the optimal seam location based on the intersection area between one of
the pairs in Figure 6.2. Some windows along the seam are chosen to zoom in for showing
the details of the optimal seams. From Figures 6.6 (a), (b), and (c), we can see that the
optimal seam would maintain the roof as integrated as possible and also tries to maintain
the integration of features such as solar panels. However, wall objects such as windows can
still be broken due to perspective differences. This situation also occurs for the nadir image
Stitching with optimal seam. Figures 6.6 (d), (e), and (f) show how the seam is placed on
the ground. It can avoid going through big objects like buildings but still cannot completely
avoid cutting some small obstacles like cars.
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6.1. Visualization of Stitched Images

Figure 6.6.: Optimal seam (marked in red line) for the intersection area and Zoom-in views
of the area inside the yellow frame.
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6. Results and Assessment

Figure 6.7.: Comparison between the directly overlayed results generated by different pre-
processing and stitching methods
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6.1. Visualization of Stitched Images

Figure 6.7 presents the results of the directly overlaid stitching using different preprocessing
or Stitching methods. For this group of images, the Tie-points are almost evenly distributed
on the images. Thus, the results generated by the clustering-selected algorithm are almost
the same as those without preprocessing. The third image on the left uses the 3D method to
stitch, which slightly decreases the duplicate items on the result. The last image shows the
Stitching results after the lens distortion calibrate of both images, which also decreases the
duplicate items but sometimes too much and leads to a small loss of information. For exam-
ple, a column of the solar panel disappears in the last image. The quantitative comparison
between those Warping methods is shown in table 6.4.

6.1.3. Comparison to Image Stitching Software

The comparison between image Stitching results generated by this thesis project and existing
image Stitching software mentioned in Chapter 3 is shown here. For the Stitching software,
we only give the results by those with free use license including Hugin, AutoStitch, and
demo version of PTGui. Table 6.2 shows a detailed comparison between different technical
aspects and Figure 6.8 shows the visual overview of the results.The geometric distortion
present in AutoStitch and Hugin outputs causes straight lines to bend unnaturally, especially
near the image borders. In contrast, the result produced by this thesis preserves rectilinear
structures and overall proportions more effectively, owing to the use of global homography
estimation and feature match filtering. Additionally, seam visibility is significantly reduced
in our results through dynamic seam optimization rather than Blending to avoid ghosting
artifacts that are evident in the overlapping areas of Hugin and PTGui outputs.

Table 6.2.: Comparison of Stitching Methods in Terms of Key Technical Aspects
Aspect AutoStitch PTGui Hugin This Thesis
Feature
Matching

SIFT SIFT / Manual
Control Points

SIFT / Manual
Control Points

DISK + LightGlue

Warp Type Homography
Warping

Dual homography
or Custom Projec-
tion Warping

Dual Homography
or Non-Linear
Warping

Homography
Warping

Global Con-
sistency

Low High Moderate Very High

Geometric
Distortion

High Low to Moderate Moderate Low

Adjustable
Parameters

None Extensive and
GUI-based for
control points,
projection models,
blending options

Extensive with
scripting and GUI
like Hugui

Fully adjustable at
code level

Exportable
Outputs

None None Project file (.pto)
and control point

Any intermediate
result if needed

Seam Op-
timization
and Blend-
ing

Multi-band blend-
ing over overlap re-
gions

Multi-band blend-
ing and user-
controllable seams

Multi-band blend-
ing and optional
seam mask specifi-
cation

No blending but
seam finder based
on dynamic pro-
gramming

Runtime Very snow Fast Moderate Very Fast
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Figure 6.8.: Visual Comparison of the stitching results using different pipelines
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6.2. Geometric Accuracy

6.2. Geometric Accuracy

6.2.1. Difference between Warped Points and Corresponding Points

The differences between the warped Feature points and their corresponding points are a
natural indicator of the geometric accuracy of the image Stitching result. The smaller the
difference, the better the image Stitching accuracy is. Figure 6.9 shows the spatial position
of the Feature points in the images to stitch and Figure 6.10 shows the change in position
of PointsA to stitch to the target points (PointsB). As shown in Figure 6.10, the target points
(PointsB) and the warped points almost overlap each other, which means that the homog-
raphy transformation has high accuracy. The RMSE between the positions of those points is
15.82 (pixel).

Figure 6.9.: Detected Feature Points on the images for stitching

Figure 6.10.: Original and warped points on the same canva with target points

To find the robust condition for image Stitching, the RMSE test is performed for more pairs of
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images. 2182 image pairs that meet the basic Stitching conditions in Chapter 5 are selected
from the Phoxy database to warp and compare RMSE. Mapping the intersection ration with
the matched feature numbers as in Figure 5.2, it presents an approximate positive corre-
lation. Also, because the images are taken with a certain gap, the intersection rate of the
images is distributed. The shape of the Gaussian mixture clustering can well describe this
kind of distribution (Scikit-learn [2024]). Thus, the image pairs are classified by these two
factors,the intersection rate and the number of matching points. Outliers labeled ”O” and
colored pink are mostly image pairs with less than 20 matching points, which are not suit-
able for Stitching. And ”N” represents the pairs that cannot be classified into any types.
From cluster ”1” to ”6”, the intersection rate and the number of feature matching are getting
higher. Figure 6.12 shows the average warped RMSE for each cluster. The RMSE shows an
obvious decrease between clusters 2 and 3 and tends to be at a stable low value in clusters 4,
5, and 6. Considering that the size of the image is 10652 × 14204, the RMSE error of cluster
3 is around 100 pixels, which is still acceptable. The cluster center for cluster 3 is 60.57%
intersection rates and 187.89 tie points, which can be considered approximately the robust
Stitching condition for this data set. The warping error for image pairs shown in Section
6.1 is shown in table 6.3. Although scenario 2 has a very low intersection rate, it still has a
relatively low warping error.

Figure 6.11.: Classification of Images based on Intersection-Tiepoints Number Clustering
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Figure 6.12.: The Average Warping RMSE in Every Image Pair Clustering

Stitching Scenario RMSE (pixel) Intersection Rate (%)
1 15.82 62.3
2 63.32 19.1
3 26.28 50.9
4 86.91 33.3

Table 6.3.: Stitching Scenarios in 6.1 and Their Warping Errors

Table 6.3 shows the warped errors for the same pair of images using different Warping
methods. The visualized comparison result is also shown in Figure 6.7. From table 6.3,
the 3D Warping method has the lowest RMSE, which means the best alignment accuracy.
However, it is only 1.32 pixels lower than the normal 2D Warping method. The 2D Warping
with unselected points has the highest RMSE, while the lens distortion calibrated somehow
makes the RMSE increase a bit.

Methods RMSE (pixel)
2D-Preprocessed 15.82

2D-NotPreprocessed 37.51
3D-Preprocessed 14.50

2D-Lens Distortion Calibrated 23.32

Table 6.4.: Stitching Methods in Figure 6.7 and Their Warping Errors

6.2.2. Difference between the Reprojected Points and Original Points

The difference between the reprojected points and the original points is calculated by ap-
plying the inverse Homography matrix to any pixel in the warped image to get its image
coordinates on the original image. In theory, the difference between the reprojected points
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and the original points should be zero if the inverse Homography matrix is correctly cal-
culated. However, due to the precision caused by floating point numbers (Microsoft Learn
[2024]), it can still have errors between 1 and 2 pixels.

Table 6.5 shows some reprojection results from the manually selected points on the warped
image (Transformed x and Transformed y) to the original image (Original x and Original y).
Since the pixel coordinates have to be integer, the rounded coordinates are also compared.
When comparing the object type of the points, the points on the flowerbed have slightly
higher reprojection errors than other types of objects, which is mainly due to the difficulty
of clicking on the exact point on the flowerbed.

Transformed x Transformed y Original x Original y Type Reversed x Reversed y Round x Round y Distance Distance Round

1003 6930 1037 902 RoofCorner 1036.92 902.11 1037 902 0.13 0.00
7661 7004 7657 1999 Solar Panel 7656.89 1998.87 7657 1999 0.17 0.00

12487 6142 12449 1886 RoofCorner 12449.01 1885.74 12449 1886 0.26 0.00
571 16422 635 10167 RoofCorner 634.76 10166.84 635 10167 0.29 0.00

6088 12636 6078 7303 RoofCorner 6077.68 7303.28 6078 7303 0.43 0.00
6037 13306 6025 7951 RoofCorner 6025.31 7950.74 6025 7951 0.41 0.00
5946 14132 5933 8743 Window 5933.14 8743.43 5933 8743 0.46 0.00
7473 6985 7470 1952 Solar Panel 7470.39 1951.21 7470 1951 0.88 1.00
7424 7071 7420 2029 Solar Panel 7421.36 2028.85 7421 2029 1.36 1.00
7612 7092 7608 2079 Solar Panel 7607.84 2078.48 7608 2078 0.54 1.00
6516 12604 6501 7337 RoofCorner 6500.23 7336.63 6500 7337 0.85 1.00
5961 13936 5948 8554 Window 5948.50 8554.47 5949 8554 0.69 1.00
5864 14131 5852 8729 Window 5852.33 8730.11 5852 8730 1.17 1.00

12195 11955 12102 7560 RoofCorner 12102.77 7559.35 12103 7559 1.00 1.41
6468 13267 6450 7977 RoofCorner 6450.55 7977.63 6451 7978 0.84 1.41
5877 13939 5867 8546 Window 5865.69 8544.75 5866 8545 1.81 1.41
8448 13855 8398 8849 Flowerbed 8398.95 8849.65 8399 8850 1.15 1.41
9184 13769 9123 8877 Flowerbed 9123.98 8876.48 9124 8876 1.11 1.41
9166 14044 9104 9141 Flowerbed 9104.50 9141.76 9105 9142 0.92 1.41
8432 14133 8380 9119 Flowerbed 8381.64 9118.19 8382 9118 1.82 2.24

Table 6.5.: Reprojected Corresponding Points

6.3. Dynamic Stitching Run-time Performance

The dynamic Stitching performance is assessed by placing timers inside the demo code to
record the time cost at each step of image Stitching. Table 6.6 records the average running
time of 100 rounds in each stage of Stitching processing before and after optimization. As
summarized in Table 6.6, the execution time dropped from 8.63 seconds to 0.59 seconds.
This confirms that the seam cost computation step benefits substantially from parallelism
due to its inherently independent row-wise operations. Taking a look at the run time of each
stage, the image loads and resizes have the best performance in optimization with parallel
processing, the Warping and optimal seam finding are only sightly improved. Also, the
precalculation of the Homography matrix saves around 0.5 seconds in the Stitching process,
which also significantly improves the run-time performance.
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Stage Original Optimized

Create Canva 16.00 15.00
DB Read Center Image Information 0.00 0.00
Image Load and Resize 6673.75 74.25
DB Find Neighbors 0.00 0.00
DB Read Image Pairs 115.50 106.75
Homography Calculation 554.75 0.00
Homography Scale and Offset 1.25 0.00
Image Warping 12.00 12.00
Optimal Seam Finding 802.25 382.00
Image Display 471.00 8.50
Total Time 8630.5 585.50

Table 6.6.: Comparison of Average Running Times (Units: ms)
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7.1. Summary and Contributions

This thesis aimed to design and implement a pipeline to dynamically Stitching images to
provide a continuous user experience in aerial oblique image view. This part includes an-
swers to the research questions proposed in Chapter 1, a brief summary, and future perspec-
tives of this thesis project.

7.1.1. Answers to Research Questions

The main question of this thesis project and the answer to it are as follows:

How can seamless oblique image mosaics be created dynamically from aerial photographs
to enhance continuous visualization and minimize measurement errors?

The dynamical seamless oblique image mosaics are created mainly by using correspond-
ing Tie-point pairs to calculate the Homography matrix and applying global transformation
to the target images to stitch. This process is optimized by precalculation and storage of
Tie-point pairs and homography. The explicit global Homography matrix can be used to
precisely revert the original image before Stitching, which minimizes the measurement er-
rors.

1. To what extent can the Stitching achieve a continuous transition between oblique
aerial images? And how is continuity measured?

Currently, this research achieves a quick hard transition between images on the same
flight controlled by mouse click in east-west direction. When a mouse click to the se-
lected direction, an immediate transition to the next central image and its two stitched
images will be done within 1 second. For smooth transition, some attempts like the
interpolation have been done, but have not really been applied to the final demo. The
continuity is mainly measured by the runtime of the integrated dynamic Stitching
demo.

2. How does the area of the intersection or the number of detected Tie-points between
two images influence the Stitching quality?

Since the Homography matrix is mainly calculated by the Tie-points, the direct influ-
ence factor is the number and distribution of the Tie-points. However, the larger the
intersection area, the higher the possibility that more Tie-points can be detected. Ac-
cording to the results in Chapter 6, the intersection rate of 60% is a reference value for
reliable Stitching.
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3. How does the seam in the stitched images influence the visualization effect?

Seam is an unavoidable issue in the image Stitching results of two images with camera
transformation and depth variation. Choosing a seam which crosses the urban struc-
ture like buildings as much as possible not only decreases the parallex caused by depth
variation of the image but also keeps the integrate structures of user-interested objects
like buildings.

4. What is the robust method for oblique aerial image Stitching when the intersection
area is small?

Like the answer in Question 2, the intersection area is not the true reason for bad
Stitching results. If there are enough precise and well-distributed Tie-points, even the
oblique aerial image with low intersection can still be nicely stitched by Homography
matrix.

5. How does the Stitching process impact the usability of images for measurement
tasks?

Since the Stitching process has explicit expression of a Homography matrix, it only
adds one more step for the measurement. Calculating the inverse matrix of the Ho-
mography matrix does not need much computation time and space and only causes
1-2 pixel errors because of the precision loss caused by float-number operations. Thus,
the Stitching process has little impact on the usability of images for measurement tasks.

6. How is Stitching quality assessed from both visualization and measurement as-
pects? The quality of the Stitching is mainly assessed by visual presentation of static
stitched images for visualization aspect. And for measurement, the reprojected geo-
metric accuracy shown in Chapter 6 is mainly for assessment.

7.1.2. Conclusions

In this thesis, an effective and systematic approach to dynamical image Stitching for visual-
ization in a C# environment was successfully developed and validated. The key innovation
lies in applying robust homography transformations for accurate image alignment, com-
bined with an implementation of optimal seam finding to enhance the visual quality of
stitched images.

The proposed method demonstrated high precision and explicit math expression compared
to existing Stitching software. The exportable Homography matrix makes it possible to track
the original image coordinates and measure on the stitched images. The experimental results
clearly indicated that the developed method provides high-quality Stitching outcomes and
a fast run-time, which is suitable for applications in the visualization and measurement of
large-scale aerial images.

In general, this research advances the field of geomatics and computer vision by providing
practical solutions and insights into interactive image mosaicking and visualization, setting
the foundation for further innovations and technological advancements.
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7.2. Limitations

The demo and results of this thesis are still prototypes for dynamical image Stitching. Sev-
eral limitations are still existing.

First, for the Stitching results itself, the single homography does not expand well to multiple
image Stitching scenarios, like Stitching all the images within a small range. The current
method can only stitch the two to three images on the same row or column well, which can
only provide a relatively small field of view.

Second, for a smooth transition between images, although some experiments have been
performed to realize the interpolation between the warped and original images, the inter-
polations for multiple images are still too complex to achieve during the thesis progress.
The current transition implementation is still directly switch to the next image in the center,
which is hard and discontinuous.

Third, there are still spaces for computational efficiency to be optimized using techniques
like cache and Graphics Processing Unit (GPU). The current implementation almost makes
full use of Central Processing Unit (CPU) and bottlenecks when processing high-resolution
images, impacting real-time responsiveness. However, there is sometimes still memory
waste because some images are repeated loaded due to the lack of efficient use of caches.

Other essential issues that have not been explored, such as scalability and integration with
the Omnibase measurement system, are also limitations of this research.

7.3. Future Work and Suggestions

Building on the current implementation and acknowledging the limitations outlined in this
thesis, several suggested directions for future work are proposed to improve the scalability,
performance, and usability of the system in real-world applications.

7.3.1. Advanced Multi-Image Stitching

Future work should focus on extending the current method beyond Stitching two or three
images in a single row or column. This would involve developing more flexible strategies
for handling multidirectional mosaicking (e.g., grid-based arrangements) and improving
the robustness of homography chaining to support more complex spatial relationships and
larger-scale datasets. Figure 7.1 shows an example of multi-image mosaic Stitching.
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Figure 7.1.: Multi-image Stitching Example, Adopted from AutoStitch Website (Brown
[2025])

7.3.2. Smooth Transition and Scrolling

The current image transition mechanism uses abrupt switching centered on the viewport.
A smoother and more perceptually pleasing experience could be achieved by implementing
advanced interpolation techniques across multiple images. Figure 7.2 shows the structure of
the image frame of the hard and soft transition. Interpolation is needed between every hard
transition of different center images.

An interactive scrolling application could be developed to replace the static or hard-switched
transitions currently in use. Such a system would allow users to pan continuously across
a virtual canvas composed of stitched images, enhancing the usability for large-scale aerial
data.
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Figure 7.2.: Image Frame Structure of Hard and Soft Transition

7.3.3. Integration with Omnibase

As mentioned in Chapter 1, integration with Omnibase would make the system practically
applicable to real-world surveying and inspection tasks. Future work should establish a
two-way communication interface for seamless data exchange and enable users to take ac-
curate measurements directly on the stitched images with the coordinate fidelity ensured by
Homography matrix.

7.3.4. Runtime Optimization

To improve performance, future work should integrate GPU-based processing and imple-
ment efficient caching mechanisms. This would reduce memory waste and increase the
responsiveness of the system when dealing with high-resolution images.
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A. Reproducibility self-assessment

A.1. Marks for each of the criteria

Figure A.1.: Reproducibility criteria to be assessed.

category criteria grade

1. Input data Oblique aerial imagery 1
Tie-point pairs 1

2. Methods
Pre-processing 1
Image Stitching processing 1
Analysis 1
Computational environment 3

3. Results 1

Table A.1.: Self-reflection of reproducibility criteria in each part of the research according to
Figure A.1
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A.2. Self-reflection on reproducibility

As indicated in the table A.1, the reproducibility of different parts in this thesis program
varies. Generally speaking, this thesis is done as the form of thesis internship at Geodelta
B.V., which named the topic and gave the original data and many supports. Thus, repro-
ducibility is limited from several aspects to protect the interests of the company.

• Input data: The oblique aerial imagery dataset is offered by Geodelta. To obtain these
images, Geodelta has paid for the survey company, Kavel 10, which executes the flight
missions to take the images. Thus, these oblique aerial images are not open data. Table
4.1 provides some of the essential properties and meta-data of these images.

The tie-point pairs are generated by Geodelta’s internal algorithm based on the DISK-
LightGlue. Since these two algorithms are published in academic papers (Tyszkiewicz
et al. [2020]; Lindenberger et al. [2023]), the tie-points data set is partly reproducible.

• Methods: All of the implementation of this research is described in detail in this thesis,
and the pseudocode is available in Chapter 5. As agreed at the beginning of this thesis
program, providing pseudo-code instead of the source code is enough. Thus, no code
is available online.

The implementation of the method relies mainly on the open source computer vision
library OpenCV, which is available in different programming languages, including
Python and C#. So, the computational environment has a high score in reproducibility.

• Results: The dynamic demos still highly rely on Geodelta’s image data and database.
However, the static version of the stitched images is shown in Chapter 6 and can be
reproduced.
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B. Reflection

This part includes reflection of this thesis research in three aspects.

• The relationship between the methodical line of approach of the Master Geomatics
and the method chosen by the student in this framework.

The MSc Geomatics programme provided a strong methodological foundation that
directly informed the thesis. Core courses such as Sensing Technologies and Pho-
togrammetry provide essential knowledge for this research. The integration of prac-
tical programming skills from Python Programming for Geomatics and modelling in-
sights from 3D Modelling of the Built Environment supported the technical develop-
ment of the drag-interpolation and seam-finding algorithms.

• The relationship between the conducted research and application of the field geo-
matics

The project contributes to geomatics by enhancing oblique aerial image navigation and
measurement. It addresses practical challenges in visualization platforms like Omni-
base, offering improved stitching, dynamic warping, and reproducible seams. The
solution supports urban analysis, infrastructure inspection, and interactive mapping,
key application areas in the geomatics domain. The use of real-world datasets and
the collaboration with Geodelta reinforced its practical relevance. By transforming
academic techniques into an operational prototype, the research illustrates how MSc
Geomatics methodologies can be applied to improve real-world engineering tools.

• The relationship between the project and the wider social context.

This thesis supports the societal needs by making aerial imagery more accessible, mea-
surable, and interactive. In applications like urban planning, infrastructure monitor-
ing, and emergency response, better image continuity and transparency improve deci-
sion making. The project’s focus on dynamic visual transition enhances the usability
of oblique imagery for both experts and public stakeholders.
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