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Abstract

Neural Radiance Fields (NeRFs) are increasingly used to generate Digital Surface Models (DSMs)
from satellite imagery. However, research is far from mature and questions considering the ac-
curacy in different environments, sensitivity and applicability have not been addressed. This
research aims to answer these questions by firstly conducting a thorough literature research,
resulting in the selection of a suitable NeRF model called SAT-NGP. The SAT-NGP model is
tested on accuracy and runtimes in both urban and rural environments using the Data Fusion
Contest 2019 (DFC2019) dataset, both prepared and unprepared. Furthermore, sensitivity anal-
ysis on the number of iterations and the ray batch size is conducted. The sensitivity analysis is
followed by an applicability research considering the implementation of Superview-1 data of the
Netherlands.

This research has found that SAT-NGP, using the DFC2019 dataset, creates more accurate
DSMs for urban areas compared to rural areas. Additionally, challenging situations are identified
where NeRF produces DSM accuracy errors. These challenging situations include edges of
buildings, shadows, flat surfaces and trees. The sensitivity analysis findings indicate that a
lower number of iterations can be used with minimal to no effect on the accuracy, reducing
runtime significantly by 50%. Altering the ray batch size yielded no improvements concerning
accuracy or runtime. Furthermore, the applicability analysis results show that it is complicated
to apply SAT-NGP to data different from DFC2019. This is mainly due to the numerous input
files that are needed, which all have to be perfectly adjusted and aligned to each other. Through
the different analyses and literature research, the findings of this study contribute to the DSM
generating NeRF research field. The results show that NeRFs are a promising development in
the field of DSM construction from satellite imagery, but many improvements can still be made
concerning accuracy methods, sensitivity research and applicability in general.
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1 Introduction

Terabytes of satellite imagery of the Earth are captured each day. These images can be used to
extract the elevation of the Earth’s surface, producing digital surface models (DSMs) (Derksen &
Izzo, 2021). Especially high-resolution satellite images provide a valuable resource for producing
accurate 3D Digital Surface Models (DSMs) (Lastilla et al., 2021). The DSMs created can
be used for a multitude of applications, including flood risk analysis (McClean et al., 2020),
mangrove forest height and biomass mapping (Simard et al., 2006), land cover classification, and
3D change detection (Demarez et al., 2019; R. Qin et al., 2016). Originally, the standard was to
create DSMs from images using semi-global dense image matching (Deseilligny and Paparoditis,
2006; Hirschmuller, 2005) (SGM). In addition to SGM, deep learning methods such as hybrid
and end-to-end techniques are applied (Chang and Chen, 2018; Hartmann et al., 2017), or
alternatively a depth fusion step (Rupnik et al., 2018). Other research has focused on feature
extraction and matching using Deep Iterative Subspace Keying (DISK) and LightGlue (Claesen,
2024). Recently, a new method for accurate 3D reconstruction has been developed, called Neural
Radiance Fields (NeRF). The method uses input imagery from multiple directions and a neural
network to produce accurate scene reconstructions with corresponding depth maps (Mildenhall
et al., 2020). After publication, NeRF research sparked a boom of related research adjusting
NeRF to a multitude of applications. One of these applications is the field of DSM generation
from multi-view satellite imagery.

This research explores the different NeRF variants that have been specifically developed for
DSM generation of satellite imagery and uses one of the NeRF models to further test its appli-
cability to different types of research areas. To achieve these objectives, first, a comprehensive
literature review of the developed NeRF models is performed.

NeRF has seen little application to DSM generation of environments with increased vegeta-
tion, such as a rural environment (L. Zhang and Rupnik, 2023; L. Zhang et al., 2024). In this
research, a rural environment is considered a suburb with increased vegetation compared to ur-
ban environments. To investigate the performance of NeRF in a rural environment, this research
explores the performance of NeRF in such a setting. Little research has been conducted on the
optimization of NeRF models that create DSMs from satellite imagery. Maŕı et al. (2023) have
adjusted the number of hidden layers in the MLP network and the number of points sampled for
each ray (these factors are further explained in Sections 2.1 and 2.6), but many other parameters
remain untested. Additionally, different NeRF models are often run with different numbers of
iterations without testing the number of iterations for a specific model. This research tests the
influence of the number of iterations and batch size on the accuracy and runtime of a single
state-of-the-art NeRF model.

Currently, NeRF models developed for DSM generation require many perfectly adjusted
inputs, resulting in difficulties when applying the NeRFs to different datasets. This limits the
usability and implementation of NeRF. Therefore, this research will aim to clarify the specific
needs of NeRF models and describe how a new dataset can be adjusted and used as input,
exploring the applicability of DSM generating NeRFs.

6



1.1 Problem Statement

Currently, state-of-the-art algorithms and methods for Multi-View Stereo (MVS) and Semi-
Global Matching (SGM), both explained in Section 2.3, struggle with several issues. These
issues include DSM reconstruction of reflective surfaces, complex topological surfaces, and areas
with little texture. The difficulties mentioned often result in unwanted errors (Stathopoulou et
al., 2023). In order to mitigate the errors, multiple learning-based methods are applied to address
the issues, including feature extraction (Zagoruyko & Komodakis, 2015), multi-view stereopsis
(Riegler et al., 2017) and depth fusion (Huang et al., 2018). Other research has focused on
improving urban 3D models using multiple datasets and an implicit neural representation (Li,
2024). However, all of the methods only address part of the problem, showing the need for a
different, more complete method, such as Neural Radiance Fields (NeRF) (Mildenhall et al.,
2020).

Another problem includes that a modern day MVS pipeline requires control over many
stages. All of these stages can influence and introduce errors in the final result. Figure 1 shows
how a NeRF model (EO-NeRF in this case) eliminates many of the stages of classic MVS,
reducing the risk of manual errors. However, it should be noted that a NeRF model requires
some pre-processing as opposed to what is shown in Figure 1. This pre-processing includes
clipping the data to the research area and adjusting camera reports, for example. Additionally,
NeRFs require training a model for each specific scene, which can take much time depending on
the hardware available (Derksen and Izzo, 2021; Maŕı et al., 2022).

State-of-the-art NeRF models, such as EO-NeRF are already outperforming the state-of-
the-art classic MVS methods, such as S2P, in terms of vertical accuracy (de Franchis et al.,
2014; Maŕı et al., 2023). Furthermore, NeRF has only been around for a few years, while classic
methods are in a more mature research stage (Mildenhall et al., 2020). Because NeRF is still
relatively young, many developments can be made. For example, NeRF opened the door for
multiple computer vision methods to be integrated, resulting in more accurate results (Billouard
et al., 2024; Maŕı et al., 2022). The application of computer vision methods can solve some of
the problems that occur in classic DSM generation techniques mentioned earlier. Currently,
vertical accuracies of less than a meter can be achieved from high-resolution pansharpened
RGB satellite images with a resolution of 30cm (Maŕı et al., 2023). These high accuracies are
a result of the robustness of NeRF to multiple factors, including lighting changes, transient
objects, occlusions and noisy data. The usage of neural radiance fields shows great promise, and
it is important to continue research on the topic. Especially concerning accuracy difficulties,
sensitivity analysis and applicability. This research aims to identify current difficulties, test
sensitivity to certain parameters and describe what is needed in the near future, to improve the
accuracy and applicability of NeRF.

Figure 1: EO-NeRF and NeRF in general eliminate many of the stages that require manual
control in modern day MVS pipelines (Maŕı et al., 2023).
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To provide an overview, the advantages of NeRF over classic DSM generation methods are
listed below.

1. NeRF eliminates many of the stages involved in classic MVS pipelines.

2. NeRF opens the door for computer vision methods.

3. NeRF is better at handling complex shapes.

4. NeRF produces more smooth and continuous models.

5. NeRF is better at handling different lighting conditions.

6. NeRF is still young and many improvements can be made more easily.

Multiple NeRF models are specifically adjusted to create DSMs from satellite imagery (Bil-
louard et al., 2024; Derksen and Izzo, 2021; Maŕı et al., 2022; Maŕı et al., 2023; Wan et al.,
2024; Xie et al., 2023; L. Zhang and Rupnik, 2023; T. Zhang et al., 2024; L. Zhang et al., 2024).
Their quality is improving every year as the methods become more sophisticated. Furthermore,
models are becoming more efficient and computation times are reduced as is the case with SpS-
NeRF (L. Zhang and Rupnik, 2023), RS-NeRF (Xie et al., 2023), SAT-NGP (Billouard et al.,
2024) and GC-NeRF (Wan et al., 2024).

Almost all models are trained and tested on four specific scenes of the Data Fusion Contest
2019 (DFC2019) dataset, which comprises high-resolution (30cm) pansharpened RGBWorldView-
3 satellite imagery of Jacksonville, Florida (Le Saux et al., 2019). SpS-NeRF and BRDF-NeRF
are the only variants of NeRF that have been tested on a non-urban environment, comprising
vegetation and bare surface (L. Zhang and Rupnik, 2023; L. Zhang et al., 2024). Unfortunately,
no ground-truth LiDAR data was available, and the results were compared to a DSM derived
from state-of-the-art photogrammetry. The lack of application of NeRF models that use satellite
imagery to derive DSMs of environments different from the four specific DFC2019 scenes, shows
that there is a research gap. Since all of the models are tested on areas of interest (AOIs) 004,
068, 214, and 260, a bias can be introduced when evaluating the performance of the NeRF mod-
els. DSM generating NeRF models are now developed mostly based on the results in these AOIs.
Therefore, it is also vital to test the performance on other AOIs. In addition, little research has
focused on changing the input parameters and monitoring their effects on the vertical accuracy
of the resulting DSM (Maŕı et al., 2023).

This thesis is executed in collaboration with CGI. The ICT consultancy company CGI also
aims to create DSMs from satellite imagery. There is a broad market for DSMs, as detailed
height maps are often unavailable for many regions. This provides a business opportunity, CGI
can sell the DSMs to the army, where elevation maps are often required to aid various processes.
Another application includes the delivery of DSMs to Kadaster, who are interested in having a
yearly DSM of certain areas, instead of the Algemeen Hoogtebestand Nederland (AHN), which
is developed every few years. The AHN will be discussed further in Section 2.5.1. In addition
to aiding Kadaster, other clients can use the DSMs for viewshed analysis or natural hazard risk
management (McClean et al., 2020).

Earlier research by Claesen, 2024 has made use of LightGlue and the DISK algorithm to
enhance a classic photogrammetry pipeline. His research pointed out that there is still room for
improvement considering height accuracy, especially in environments with increased vegetation.
The methods and findings of his research are explained further in Section 2.6.1. Parallel to this
research on NeRF, another research is conducted involving DSM correction using space-borne
LiDAR to improve the shortcomings of the methods used by Claesen, 2024. These shortcomings
include reduced feature matching in areas with sparse features resulting in decreased vertical
accuracies. Since NeRF does not rely on feature matching, it might be able to produce higher
vertical accuracies in these areas.
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1.2 Research Objectives and limitations

1.2.1 Main research objective: Creating DSMs using NeRF

The objective of this research is to determine to what extent NeRF can be used to create
DSMs from 2D high-resolution RGB satellite imagery of urban and rural environments. In this
research, the term rural is used to describe a suburban environment with increased vegetation.
An existing state-of-the-art NeRF model is tested on data comprising different environments.
The main research objective leads to the following main research question:

• To what extent can a state-of-the-art Neural Radiance Field (NeRF) model be used to
create Digital Surface Models (DSMs) of both urban and rural environments from high-
resolution RGB satellite imagery?

To answer the main research question, multiple sub research questions are identified. Firstly,
a literature research is conducted to identify the optimal state-of-the-art NeRF model for this
research. In addition to that, the performance of the NeRF model is evaluated on urban and
rural datasets. To determine the impact of the number of iterations and the ray batch size on
the vertical accuracy and runtime, a sensitivity analysis is conducted. Lastly, the applicability
of NeRF is analyzed regarding the use of a dataset that differs from the DFC2019 data.

1.2.2 Sub-research objectives: Model selection, Accuracy, Sensitivity and Appli-
cability

The following sub-research questions are identified for this research.

1. What is the optimal NeRF model to use for this research, considering available code,
computing time and accuracy?

2. What accuracy does NeRF achieve using high-resolution RGB satellite imagery of urban
and rural environments?

(a) What accuracy does NeRF achieve using high-resolution RGB satellite imagery of
urban environments?

(b) What accuracy does NeRF achieve using high-resolution RGB satellite imagery of
rural environments?

3. What is the sensitivity of the NeRF model used considering the number of iterations and
batch size, in both urban and rural environments?

4. What is the applicability of NeRF and what is needed to use NeRF on data different from
DFC2019?

1.3 Research limitations

For this research, the development of a new, optimized NeRF model is out of scope. The
development of a new model would be too time-consuming for a thesis project of only 5 months.
Additionally, the performance of the NeRF method will not be tested on view synthesis, as
the focus of this research lies on creating DSMs. View synthesis is the process of generating
accurate novel views from different angles that have not been seen before. Lastly, only NeRF
will be used to create DSMs and no other methods such as Gaussian splatting or S2P are
explored (de Franchis et al., 2014; Kerbl et al., 2023). Although the methods that are needed to
implement data different from DFC2019 are investigated, these methods are not implemented
in this research due to time constraints.
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1.4 Research methodology

Figure 2 is created to give insight in the structure of this research. The conceptual model shows
that the research is divided in three phases. Firstly, the identification phase, starting with a
literature research, leads to a research gap, problem statement and the research questions. The
identification phase is followed by the execution phase in which results are produced for each
sub research question. Lastly, in the evaluation phase, the results of each sub research question
are evaluated and a conclusion is drawn, answering the main research question. In addition
to the conceptual model, Figure 3 is created to provide an overview of the different steps and
processes in this research.
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Figure 2: Conceptual model providing an overview of the structure of this research.
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Figure 3: Flowchart providing an overview of the processes and steps that are involved in this research.
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2 Related work

This section will first explain how Neural Radiance fields work, followed by background infor-
mation for DEM reconstruction using satellite imagery. Basic concepts such as the differences
between DEMs, DSMs and DTMs are discussed. Furthermore, the concepts of photogrammetry,
structure-from-motion, bundle adjustment, multi-view stereo, rational polynomial camera mod-
els, LiDAR and the Actueel Hoogtebestand Nederland are covered. Lastly, each NeRF model
that produces DSMs from satellite imagery is investigated separately.

2.1 Neural Radiance Fields

Recently, a new method to extract 3D from 2D imagery has been developed called Neural
Radiance Fields (Mildenhall et al., 2020) (NeRF). It is based on the principle of learning a 3D
object or scene as a continuous function F (Tewari et al., 2020). NeRF uses multiple views of
a scene to learn a continuous volumetric representation (i.e., 3D radiance field). Unlike other
methods, NeRF is able to include multiple aspects of the physical scene, such as illumination
sources and surface radiance as observed in the input images (Mildenhall et al., 2020).

2.1.1 NeRF in a Nutshell

Due to the complicated processes and concepts that are used, NeRF can be difficult to under-
stand. Therefore, this section aims to explain NeRF in a simplified manner.

The initial goal of NeRF is to render or reconstruct realistic 3D scenes from 2D images.
The reconstruction allows the 3D scene to be viewed from every angle, even ones that are not
covered by the 2D images. In addition to that, NeRF is able to incorporate view-dependent
effects, including highlights and reflections. Simply put, the input for NeRF is 2D images
that are taken at different angles. After that, rays are cast through the scene and sampled at a
certain amount of points. From these rays, the neural network learns the 3D structure and view-
dependent color using volume rendering and rendering loss, as shown in Figure 4 (Mildenhall
et al., 2020). In this research, modified versions of the original NeRF model are used. These
versions are able to extract the surface elevation from satellite imagery input using volume
rendering.

Figure 4: Overview of NeRF. Showing the 5D input (x, y, z, θ, ϕ) from ray sampling (a), the
output of the MLP comprising color and volume density (θ,RGB) (b), volume rendering (c)
and the rendering loss (d) (Mildenhall et al., 2020).
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2.1.2 Positional encoding and Hierarchical sampling

NeRF uses a 5D function (F ) to represent a static scene. The 5D function comprises the
viewing direction (θ, ϕ) at each point in space (x, y, z). To generate the 5D input for the
deep neural network (MultiLayer Perceptron (MLP)), rays are shot (marched) through the 2D
images. Positional encoding is used to improve the performance of NeRF in high-frequency colour
and geometry variation situations. It is used to map the 5D inputs for the MLP to a higher
dimensional space by applying high frequency functions. By using the positional encoding, the
MLP is able to better fit data with increased variability. After positional encoding, sampling
is performed at a certain amount of points along each ray. A hierarchical sampling method is
used to increase rendering efficiency (Mildenhall et al., 2020). In hierarchical sampling, a fine
and a coarse network are optimized simultaneously, where the coarse network is used as a guide
to sample increasingly at locations where the relevant parts of the volume are located, as shown
in Figure 5 (Mildenhall et al., 2020).

Figure 5: Visualization of the sampling process. The figure shows that coarse sampling is used to
detect where sampling should be increased to optimize the finer sampling. On the left, the ray is
coarsely sampled with only few points. The middle image shows that it detects where something
is approximately located. Finally, the right image shows that the sampling is increased for the
approximate location of an object (Kim, 2022).

2.1.3 MLP network

As mentioned before, a deep neural network (MLP) is used to learn the volume density (σ)
and view dependent colour (RGB or c) from approximating 5D input (x, y, z, θ, ϕ) of the scene.
The MLP is made up of a number of layers that each contain multiple neurons, which are
interconnected with all of the neurons from the other layers. For NeRF, the MLP network
architecture is made up of 10 layers of which the first 8 intermediate 256-neuron layers have
Rectified Linear Unit (ReLU) activation. ReLU activation outputs the input and otherwise 0.
At the 5th layer, the input location is concatenated to the layers activation. After the 8th layer,
a 9th layer with 256 channels is added to the MLP using no activation. This layer outputs
the volume density and a 256-dimensional feature vector. Additionally, the viewing direction
is concatenated to the layer’s activation. After that, another layer is added with 128 channels
and ReLU activation. This layer outputs the RGB value at each position (x) from a certain
viewing direction (d) using sigmoid activation. Sigmoid activation outputs a value between 0
and 1 (Mildenhall et al., 2020).
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Figure 6: Architectural layout of the MLP network used for NeRF. Input vectors are shown in
green, output vectors in red and the MLP layers in blue. The numbers specify the dimensionality
of the vectors and the number of channels for the MLP layers. Additionally, black arrows indicate
ReLU activations, red arrows no activations and dashed black arrows sigmoid avtivations. The
+ sign indicates where vectors are concatinated (Mildenhall et al., 2020).

2.1.4 Volume rendering

The output of the MLP is used for volume rendering. Equation (1) shows how the volume
rendering is executed. The formula is build out of the following components:

• C(r) The expected color of a camera ray (r).

• T (t) The amount of light that remains at that point. It can be interpreted as the probability
that the ray travels from tn to tf without hitting another particle.

• σ(r(t)) The volume density, which can be interpreted as the differential probability of a
ray terminating at an infinitely small particle at location x.

• c(r(t)) The color at a certain point from viewing direction d.

• d The viewing direction (θ, ϕ).

C(r) =

∫ tf

tn

T (t)σ(r(t))c(r(t),d) dt, where T (t) = exp

(
−
∫ t

tn

σ(r(s))ds

)
(1)

The volume rendering essentially takes the mean of all the points in a ray. To render a certain
view, the integral C(r) needs to be estimated for a camera ray through every pixel of a chosen
virtual camera. To do that, T (t) is calculated, which stands for the chance that the ray does not
hit another particle. In addition to that, stratified sampling is used to sample small intervals
instead of fixed points. The stratified sampling allows the discrete set of samples to be evaluated
at continuous positions during optimization of the MLP. It enables the scene to be continuously
represented. Furthermore, alpha compositing is used to control transparency of the neural
radiance fields (Mildenhall et al., 2020).
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2.1.5 Rendering loss

After volume rendering, the loss is calculated. This means that the color of the ray is compared
to the input point to determine what the difference or loss is. The loss formula, shown as Equa-
tion (2) calculates this difference as a squared error for both the coarse and the fine renderings
(Mildenhall et al., 2020). The following components make up Equation (2):

• L is the loss which can be interpreted as the difference between the ground truth and the
predicted value

• C(r) is the ground truth volume predicted RGB colours

• Ĉc(r) is the course volume predicted RGB colours

• Ĉf (r) is the fine volume predicted RGB colours

L =
∑
r∈R

[
∥Ĉc(r)− C(r)∥22 + ∥Ĉf (r)− C(r)∥22

]
(2)

2.2 DEM, DSM, DTM

In this research, the focus lies on creating height models and therefore, it is important to discuss
some terminology. The terms Digital Terrain Model (DTM), Digital Surface Model (DSM)
and Digital Elevation Model (DEM) are often used interchangeably. However, there are some
differences that should be taken into account when using these terms. Therefore, this section
aims to explain the differences between DTM, DSM and DEM.

Firstly, a DTM solely focuses on the bare surface of the Earth without any man-made objects
or vegetation. DSMs do take these objects and vegetation into account and can thus be used for
different purposes. The normalized DSM (nDSM) provides the height distance between a DTM
and a DSM. Lastly, a DEM is an overarching term for DTM and DSMs as it covers the elevation,
but there is no specification on what is included. Figure 7 shows the differences between the
terms for height models (Ledoux et al., 2024).

Figure 7: Elevation profile view of a point cloud in Delft showing a DTM in pink, a DSM in
green and the nDSM in blue (Ledoux et al., 2024).

In this research, the derived height models are referred to as DSMs because all objects on
the Earth are included. However, a distinction must also be made between 2.5D, 2.75D and
volumetric modeling (full 3D). Figure 8 illustrates the differences for the types of modeling. 2.5D
does not include surfaces under overhanging objects such as trees or balconies and can always
be projected on a 2D plane. 2.75D allows for more than 1 z value at each location, while 3D
modelling also includes the volumetric modelling of objects (Ledoux et al., 2024). This research
only includes 2.5D modeling due to restrictions in the GIS software used.
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Figure 8: Differences between a terrain (a), 2.5D modelling (b), 2.75D modelling (c), and
volumetric modelling or full 3D (d) (Ledoux et al., 2024).

2.3 Photogrammetry

Photogrammetry is defined by Förstner andWrobel (2016, p.1), as ”the science and technology of
obtaining information about the physical environment from images, with a focus on applications
in mapping, surveying and high-precision metrology”. The goal of photogrammetry is to perform
these tasks either automatically or semi-automatically, specifically focusing on completeness,
reliability and accuracy.

Since the 1930s, humans have been creating topographic maps from aerial imagery. At that
time, maps were still drawn by hand on paper. Later, in the 1970s, a new type of data in
the form of satellite imagery emerged, some of these satellites were also equipped with laser
scanners. Today, unmanned aerial vehicles are widely used as a means to obtain data. Data
created from different types of data capture is stored and processed in geoinformation systems
(GIS) (Förstner & Wrobel, 2016).

Photogrammetry is based on the principle of triangulation in 3D. Using imagery taken from
different angles, semantic information can be derived, such as the elevation of an area. Figure 9
shows the traditional photogrammetry pipeline. Firstly, a task is specified which leads to a flight
plan to shoot the imagery. It is important to create a flight plan to ensure full coverage and
object identification. Usually, the measurements of the camera pose and orientation are aided by
the Global Positioning System (GPS) and inertial measurement units. Cameras are designed so
that the perspective model remains accurate up to minor distortions, which are determined by
precalibration. Bundle adjustment is used to better estimate orientation parameters and align
3D scene points and 2D scene points (Förstner & Wrobel, 2016). Some common techniques in
photogrammetry pipelines are discussed in the following sections.

Figure 9: Traditional pipeline of photogrammetry (Förstner & Wrobel, 2016).
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2.3.1 Structure-from-motion (SfM)

Structure-from-Motion (SfM) is a method that is often included as a pre-processing step in
NeRFs. The method can be used to estimate the camera orientation, which is necessary to
cast the rays used in NeRF for example (Maŕı et al., 2022). Contrary to photogrammetry, SfM
does not require calibrated cameras. Additionally, SfM uses feature detection algorithms while
photogrammetry uses ground control points or fiducial marks (Schönberger & Frahm, 2016).

SfM is defined by Schönberger and Frahm (2016, p.1), as ”the process of reconstructing 3D
structure from its projections into a series of images taken from different viewpoints”. Basi-
cally, a 3D reconstruction is created from 2D imagery. Schönberger and Frahm (2016) propose
incremental SfM as a consecutive pipeline including an iterative reconstruction element. The
first step is the extraction and matching of features in the imagery. After that, a geometric
verification step is executed and a scene graph is produced. The scene graph serves as a base
for the reconstruction stage that starts with a two-view reconstruction. More images are added
incrementally and triangulation of scene points is performed. Additionally, outliers are filtered
and reconstruction is improved using bundle adjustment (Schönberger & Frahm, 2016). Bun-
dle adjustment is further discussed in the next section due to its usage in some of the DSM
generating NeRFs.

2.3.2 Bundle Adjustment

Bundle adjustment is described by Triggs et al. (2000, p.1), as ”the problem of refining a visual
reconstruction to produce jointly optimal 3D structure and viewing parameter (camera pose
and/or calibration) estimates.” The name bundle adjustment originates from the bundle of light
rays that are reflected by features, which are adjusted according to the feature and camera
orientation and location. Everything is adjusted in one bundle, including camera and structure
parameters. Reprojection errors are reduced by bundle adjustment, decreasing discrepancies
between the location of features in the imagery and the projected positions from camera pa-
rameters and 3D points. Figure 10, shows a schematic representation of how bundle adjustment
works.

Maŕı et al. (2021) have developed a bundle adjustment pipeline specifically designed for
refining the camera reports of satellite images. The code for the pipeline is publicly available
on GitHub and is used in this research to pre-process satellite images of the DFC2019 dataset.
The pipeline improves the accuracy of the camera reports, which also improves the final results
of the NeRF model.

Figure 10: Schematic illustration, showing the process of bundle adjustment (Moons et al.,
2009).
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2.3.3 Multi-view stereo (MVS) and Semi-Global Matching (SGM)

Where SfM creates a sparse point cloud and is used to estimate camera position and orienta-
tion, multi-view stereo (MVS) can use these estimates to create a more dense point cloud and
a more accurate 3D reconstruction. The MVS pipeline usually consists of 4 steps involving
image collection, camera parameter estimation for each image, 3D geometry reconstruction and
optionally material reconstruction of the scene. The results of MVS heavily rely on the quality
of the input imagery and camera parameter estimation. Thus, MVS is dependent on the SfM
algorithms that are underlying (Furukawa & Hernández, 2015).

Semi-Global Matching (SGM) further improves the final 3D model by performing a smoother
and more accurate depth estimation. The method focuses on pixelwise matching of mutual
information. Additionally, a global smoothing constraint is approximated by combining multiple
1D constraints. Furthermore, disparity is calculated with sub-pixel accuracy and occlusion
detection (Hirschmuller, 2005).

2.4 Rational Polynomial Camera (RPC) models

The Rational Polynomial Camera (RPC) model is defined by Maŕı et al. (2021, p.345), as
”A generic sensor model, which is widely used to describe the acquisition process of optical
satellite sensors independently from the specific physical properties of the sensor.” The model
describes the geometric relationship between image coordinates (pixels) and object-space coor-
dinates (latitude, longitude, and elevation) (G. Zhang & Yuan, 2006). Due to their widespread
usage, satellite vendors tend to include an RPC model with the satellite imagery that they sell
(K. Zhang et al., 2019). RPC models allow for high-resolution satellite imagery applications
due to their increased fitting capability and simplicity. Additionally, RPC models enable pho-
togrammetric interoperability of different satellite imagery as a result of its generalization ability
(G. Zhang & Yuan, 2006).

The RPC model usually consists of 78 coefficients and 10 normalization constants. The
formulas are shown below in Equation 3 and 4 and have the following components:

• Two dimensional image coordinates u and v.

• Latitude, longitude and altitude x, y, z.

• Ratios of two cubic polynomials parameterized by 39 coefficients g, h.

• Normalization constants µx,y,z,u,v and σx,y,z,u,v .

u = µu + σu · g
(
x− µx

σx
,
y − µy

σy
,
z − µz

σz

)
(3)

v = µv + σv · h
(
x− µx

σx
,
y − µy

σy
,
z − µz

σz

)
(4)

As stated before, these two functions describe the geometric relation between the 2D image
coordinates and 3D ground coordinates. The RPC model is an important input in some of
the NeRF models that are used to create DSMs from satellite imagery, which will be discussed
further in this report.
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2.5 Light Detection And Ranging (LiDAR)

LiDAR stands for Light Detection And Ranging, and is a method to measure the distance
between an object and the scanner. LiDAR usually consists of a laser, a scanner and a specialized
GPS. Often, the equipment is mounted to an aerial vehicle, such as a plane or a helicopter. After
that, the vehicle flies over an area and measures the elevation accurately. It measures the distance
between the scanner and the ground by evaluating the return time of the laser pulse. LiDAR
is used for many applications including archaeology, agriculture, autonomous vehicles, forestry,
military, and many more (National Ocean Service & Administration, 2024). In DSM research, a
LiDAR elevation model is often considered ground truth due to its accuracy (Derksen and Izzo,
2021; Maŕı et al., 2022; Xie et al., 2023). However, LiDAR is not without errors, which must be
considered when evaluating results (Liu, 2008).

2.5.1 Actueel Hoogtebestand Nederland

The Actueel Hoogtebestand Nederland (AHN) is developed by a collaboration between the water
boards, the provinces, and Rijkswaterstaat with the goal of creating a digital elevation dataset of
the Netherlands. In this research, the AHN is used as a hypothetical ground truth (gt) dataset
to compare the NeRF derived DSMs to. The AHN contains both a DTM and a DSM and has
been an ongoing project from 1997 until present. It is provided to the public as open data with
no costs. The collection and processing of the elevation data takes multiple years and therefore,
a new version of the AHN is distributed every few years. The most recent version is AHN 5,
which is not available for the whole of the Netherlands yet (AHN, 2024).

To develop the end product of AHN, multiple steps have to be taken. Firstly, the data is
collected through flying flight paths with an airplane. The airplane has a LiDAR scanner on
board, which accurately measures the height and creates a point cloud. After the flight paths are
flown, the data is checked for completeness and quality to ensure it is of the required standard.
Next, the data is processed further and precise Global Navigation Satellite System (GNSS)
corrections are applied as well as the alignment of flight paths. The filtering of the data is the
most labor intensive part of the pipeline. Filtering allows for distinction between vegetation,
buildings and the ground level with their respective classification codes. After filtering, some
checking operations are executed on point density, point distribution and the filtering itself.
Furthermore, the 3D orientation and location are also examined. If the checking is successful,
the data is accepted. When the data is accepted, it can be merged with the existing data of
other areas to create a comprehensive elevation dataset of the whole of the Netherlands. Finally,
the data is distributed as open data to the public through multiple services (AHN, 2024).

2.6 NeRF models and COLMAP for DSM generation

This section aims to provide an overview of the existing state-of-the-art NeRF models that use
satellite imagery to create DSMs. Each NeRF variant adds different methods that focus on
optimizing various issues concerning multi-date imagery, accuracy and computing times. Due
to differences in settings and hardware, a separate table concerning the accuracy is provided
for each NeRF variant. The differences often make the results of the NeRF models difficult to
compare. An overview of the NeRF models that are tailored for DSM creation using satellite
imagery is shown in Figure 11. Additionally, this section focuses on the DSMs and does not
include analysis on novel view synthesis, since that topic is out of scope for this research.
Furthermore, the network architecture is not discussed for most models for simplicity reasons.
Note that not all of the methods and NeRF models discussed in this section are used in this
research. Especially the methods of Sat-Nerf are explained in greater detail because most NeRF
models are based on it. Next to Sat-NeRF, increased attention should be paid to SAT-NGP.
In addition to the NeRF models, the methodology and results of Claesen (2024) are also briefly
explained.
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Figure 11: An overview of the NeRF models that are adjusted to create DSMs from satellite imagery, with their respective added methods.
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2.6.1 DSM generation using COLMAP

Claesen (2024) aimed to adjust and improve an existing pipeline to generate DSMs from satellite
imagery. The original pipeline of K. Zhang et al. (2019) was implemented using COLMAP
feature detection and matching using Scale-Invariant Feature Transform (SIFT). COLMAP is
a pipeline that uses SfM and MVS with a graphical and command line interface. Additionally,
an adjusted pipeline was implemented using Deep Iterative Subspace Keying (DISK) for feature
extraction and LightGlue for feature matching (Claesen, 2024). Figure 12 shows an overview of
the two different pipelines. Both methods were tested on the Intelligence Advanced Research
Projects Activity Multi-View Stereo 3D mapping challenge (Worldview-3 panchromatic data),
and Den Haag and Delft datasets (Superview-1 panchromatic data). AHN 4 is used for a ground
truth DSM.

The mean difference between the derived DSM and ground truth is not reported on for the
Intelligence Advanced Research Projects Activity dataset. However, the mean differences for
the original pipeline are 3.72m and 0.88m for Delft and Den Haag respectively. The adjusted
pipeline resulted in mean differences of 3.52m and 3.25m for Delft and Den Haag respectively.
This means that the vertical accuracy improved for Delft and decreased for Den Haag when
applying the adjusted pipeline. Claesen (2024) does not provide an explanation for the decrease
in accuracy of the Den Haag dataset. It is interesting to compare the results to the results in
this research.

Figure 12: Overview of the two seperate methods that Claesen (2024) has tested including
the colmap feature detection using SIFT and the adapted feature detection using DISK and
Lightglue (Claesen, 2024).
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2.6.2 Shadow Neural Radiance Fields (S-NerRF)

Derksen and Izzo (2021) were the first to develop and optimize NeRF specifically for photogram-
metry purposes using high resolution satellite imagery. To create the models, the DFC2019
dataset was used, comprising 10-21 WorldView-3 satellite images of Jacksonville, Florida with
a 0.3m resolution and an off-nadir angle below 35◦ (Le Saux et al., 2019). It must be noted
that only the RGB bands were used and that the images are downsampled to 0.6m resolution.
The images are downsampled due to the available LiDAR test dataset, which has a resolu-
tion of 0.5m. The optimization of NeRF posed different issues compared to computer vision
applications. Firstly, the satellite imagery is taken at different timestamps resulting in major
non-correlation Additionally, the amount of viewing angles and their distribution is reduced,
due to the dataset specifications mentioned earlier. Classic NeRF performs poorly with vary-
ing light sources, therefore S-NeRF adds an explicit model that incorporates shadow effects to
create more accurate novel-view synthesis and 3D reconstruction. To improve on classic NeRF,
S-NeRF introduces three different methods (Derksen & Izzo, 2021).

Firstly, the shadow-aware irradiance model learns the different sources of light for each scene,
including a directional white light source (Sun, s) and a diffuse coloured light source (Sky). The
light sources are learned in order to render ambient light effects and realistic shadows. The
shadow-aware irradiance model is shown in Figure 13, where the outgoing light (c) is derived by
multiplying the albedo (a) and the total incoming light (l). Secondly, Derksen and Izzo (2021)
use an extra training step to trace rays from the light source into the scene. The additional
training step enhances the quality of the learned light source visibility at every point. Lastly,
to improve the sampling of the rays, an altitude-based sampling scheme is used. By using
altitude-based sampling, the model is better fitted to the relatively ”flat” shape of the Earth.
The altitude bounds used for the model can be obtained by using an existing LiDAR dataset or
a different (coarse) elevation dataset (Derksen & Izzo, 2021).

Figure 13: The shadow-aware irradiance model as implemented by Derksen and Izzo (2021)
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The model is tested on the study areas 004, 068, 214 and 260 of the DFC2019 dataset,
each covering an area of 300m x 300m. For each study area, the Mean Absolute Error (MAE)
compared to LiDAR is calculated. This measurement gives the mean deviation from the LiDAR
gt DSM, treating negative and positive errors similarly. The MAE is used in every NeRF research
as the main DSM accuracy performance indication. Both classic NeRF and S-NeRF without
solar correction and with solar correction are compared. The NeRF variants are executed with
N = 64 sample points per ray and h = 100 units for each MLP layer with a batch size of 1024
rays. Training S-NeRF took approximately 8 hours using a GPU with 12GB RAM. The results
of Derksen and Izzo, 2021 are shown in Table 1 and show that S-NeRF outperforms classic
NeRF for each study area. However, solar correction does not consistently improve the results.
In the 004 and 214 study areas, the MAE is lower if solar correction is not included. The code
is available for S-NeRF on GitHub (Derksen & Izzo, 2021).

Table 1: Results of Derksen and Izzo, 2021 showing the MAE(m) for each area and NeRF
variation (SC indicates solar correction). The most accurate result for each research area is
indicated in bold.

2.6.3 Satellite Neural Radiance Fields (Sat-NeRF)

Sat-NeRF combines the work of S-NeRF, Depth-supervised NeRF (DS-NeRF) and NeRF in the
Wild (NeRF-W) to solve satellite-specific issues concerning the uncommon camera models, the
large distance between a scene and the camera, and image appearance differences due to multi-
date collection (Deng et al., 2022, Derksen and Izzo, 2021, Maŕı et al., 2022, Martin-Brualla
et al., 2021).

NeRF-W is able to learn what is part of the static scene and removes transient objects that
are only present in some of the imagery but not all of it. Furthermore, the removal of transient
objects also increases the robustness to radiometric variation (Martin-Brualla et al., 2021).

DS-NeRF uses sparse depth supervision to improve learning rates and decrease the number
of input images. To achieve this, a depth supervision term is added to the loss function. The
sparse depth is generated by a Structure-from-Motion (SfM) pipeline, which is, as mentioned
in Section 2.3.1, common in other NeRF variants to estimate camera orientation (Deng et al.,
2022).

Sat-NeRF improves on S-NeRF and adopts the shadow-aware irradiance model. Next to
that, Sat-NeRF applies a different point sampling strategy. The proposed point sampling strat-
egy is based on the Rational Polynomial Camera (RPC) model that is used for satellite cameras
(discussed in Section 2.4. Instead of modeling the satellite camera as a pinhole camera in S-
NeRF, Sat-NeRF uses the projection and localization function of the RPC model to cast rays
directly in the object space. A benefit of the RPC-based method includes the independence to
satellite systems, which is useful when applying NeRF to different datasets (Maŕı et al., 2022).
Furthermore, Maŕı et al. (2022) use a correction of RPC inconsistencies prior to training, by im-
plementing bundle adjustment as proposed by Maŕı et al. (2021). As explained in Section 2.3.2,
bundle adjustment involves the simultaneous optimization of both the viewing parameters (ex-
ternal and/or internal) of multiple cameras and the 3D positions of the objects they capture. It
aims to reduce the reprojection error, which is the difference between the observed image points
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and the projected points from the 3D model (Maŕı et al., 2021).
The Sat-NeRF network architecture that is shown in Figure 14 provides the foundation for

multiple NeRFs that use satellite imagery to create DSMs. Due to its importance, it will be
discussed in this section. The network architectures of the other NeRFs will not be discussed
for simplicity reasons. Firstly, the input coordinates x are fed into a fully connected 8 layer
MLP with SIREN initiation for the first layer (Maŕı et al., 2022). SIREN stands for Sinusoidal
Representation Networks and uses different activation functions compared to ReLU and sigmoid
activation. Activation functions influence the output of the neurons and SIREN uses sine func-
tions as outputs. The sine functions are able to capture more details while maintaining efficiency
(Sitzmann et al., 2020). After the 8th layer, the volume density is outputted through softplus
activation. The softplus activation results in a smoother approximation compared to ReLU. An
additional layer is added to the MLP that produces the uncertainty coefficient β together with
the transient embedding tj and another layer with half the neurons and softplus activation. The
albedo color ca is derived through a layer with half the neurons and sigmoid activation. Shading
scalar s uses three additional layers with half the neurons, direction of solar rays ω and sigmoid
activation. The direction of the solar rays ω is also used for the ambient color a (Maŕı et al.,
2022).

Figure 14: Network architecture of Sat-NeRF, where x represents the input coordinates, h the
number of neurons, σ the volume density, ω the direction of the solar rays extracted from the
azimuth and elevation angle of each input image, tj the transient embedding vector of image j
manually set to N (t)=4, β the uncertainty coefficient, ca the albedo color, s the shading scalar
and a the ambient color. Fully connected layers are shown in blue and with optional SIREN
initiation in red. Additionally, activation functions are shown in light blue (sin), red (sigmoid)
and dark blue (softplus) (Maŕı et al., 2022).
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The same DFC2019 dataset and study areas are used to evaluate Sat-NeRF, except the areas
of interest are slightly reduced to 256 x 256 m. The reason for the smaller areas is not stated
by (Maŕı et al., 2022). The NeRF variants are executed with N = 64 sample points per ray and
h = 512 units for each MLP layer with a batch size of 1024 rays. The training of Sat-NeRF
takes approximately 10 hours without solar correction or depth supervision and twice as much
when they are included. Table 2 shows the MAE results of Sat-NeRF. The results indicate that
RPC-based point sampling and bundle adjustment have a positive influence on the MAE values,
as the MAE values are lower for NeRF and S-NeRF compared to the values in Derksen and Izzo
(2021). Sat-NeRF outperforms S-NeRF and standard NeRF in each scene. The effects of depth
supervision and solar correction differ for each scene, as they do not consistently improve the
results. Similarly to S-NeRF, the code for Sat-NeRF is available on GitHub (Maŕı et al., 2022).

Table 2: Results of Maŕı et al. (2022), showing the MAE(m) for each area and NeRF variation.
It must be noted that RPC-based point sampling and bundle adjustment are applied unless
specified otherwise. SC and DS stand for solar correction and depth supervision respectively.
The most accurate result for each research area is indicated in bold.

2.6.4 Multi-Date Earth Observation NeRF (EO-NeRF)

EO-NeRF builds upon S-NeRF and Sat-NeRF to better fit multi-date satellite data. Multiple
improvements are made by Maŕı et al. (2023) to make the NeRF model more accurate.

The first improvement comprises a different shadow model compared to S-NeRF and Sat-
NeRF. S-NeRF and Sat-NeRF try to estimate shadows as a color property determined by the
solar direction (Derksen and Izzo, 2021, Maŕı et al., 2022). However, this method does not
perform well when the solar direction differs between the input images. The S-NeRF and Sat-
NeRF models use a solar correction term to mitigate the decreased performance, which has some
unwanted side effects. EO-NeRF uses a different shadow model that renders shadows based on
geometry for every optimization step. This method separates shadows from other transient
objects in the scene (Maŕı et al., 2023).

The second improvement includes the usage of a different network architecture. EO-NeRF
combines the loss-functions used in Sat-NeRF and NeRF-W, which introduce an uncertainty
scalar that reduces the contribution of camera rays coming from transient objects (Maŕı et al.,
2023, Martin-Brualla et al., 2021).

Furthermore, EO-NeRF adopts Universal Transverse Mercator-based (UTM) point coordi-
nates instead of Earth-centered Earth-fixed, which is used by Sat-NeRF. By using UTM coordi-
nates and altitude to represent 3D points, the properties of the Cartesian system are preserved.
Additionally, it is beneficial to have the altitude aligned with the z-axis to better fit the 3D
space of the scene. Figure 15 illustrates the improved use of space by the UTM-based method
(Maŕı et al., 2023).
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Figure 15: Earth-centered Earth-fixed (ECEF)(a) and a UTM-based(b) 3D space to project 3D
point coordinates. The coordinates are normalized between -1 and 1. Both figures use the same
RPC camera model to cast rays (Maŕı et al., 2023).

The final adjustment of EO-NeRF consists of implementing bundle adjustment internally,
compared to Sat-NeRF which uses bundle adjustment before the MLP optimization (Maŕı et al.,
2023, Maŕı et al., 2022). Based on previous research, it is possible to perform bundle adjustment
simultaneously with the MLP optimization (Lin et al., 2021). Table 3 shows that simultaneous
bundle adjustment yields improved results compared to the external bundle adjustment used in
Sat-NeRF.

EO-NeRF is tested on the same DFC2019 dataset as S-NeRF and Sat-NeRF (Le Saux et al.,
2019). In addition to the optical RGB imagery, EO-NeRF is able to handle RAW pansharp-
ened imagery. Furthermore, each NeRF variant is executed with N = 128 points per ray and
h = 256 neurons for each MLP layer with a batch size of 1024 rays. Training the model takes
between 10 and 20 hours on a 12GB GPU, which is comparable to Sat-NeRF. Table 3 shows
that EO-NeRF has lower MAE values compared to Sat-NeRF, indicating improved performance.
Especially for the raw pansharpened imagery, EO-NeRF greatly outperforms Sat-NeRF. Fur-
thermore, EO-NeRF is tested with the same external unrefined RPC camera models, showing
decreased performance for both types of imagery. However, when internal bundle adjustment
is applied, results are similar to standard EO-NeRF. The code for EO-NeRF is not publicly
available (Maŕı et al., 2023).

Table 3: Results of Maŕı et al. (2023), showing the MAE(m) for each area, imagery type and
NeRF variation. It must be noted that the UTM-based point coordinates are used for every
NeRF type. The most accurate result for each research area is indicated in bold.
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2.6.5 Remote Sensing Neural Radiance Fields (RS-NeRF)

RS-NeRF is mostly based on S-NeRF, however Xie et al. (2023) also draw inspiration form
Instant-NGP (Müller et al., 2022), NeRF (Mildenhall et al., 2020), Block-NeRF (Tancik et al.,
2022) and Urban Radiance Fields (Rematas et al., 2022). In addition to improving the accuracy
of the DSMs compared to S-NeRF, RS-NeRF also aims to improve the training speed, for which
Instant-NGP is used.

Instant-NGP is an acceleration method, which can improve the training times that are
required for NeRF. The method uses multi-resolution hash encoding in order to store 3D features,
resulting in highly reduced training times. Through the method, GPU parallel efficiency is
enhanced and memory access is simplified. The result is a reduction in training times from
hours to minutes or seconds for different NeRFs (Müller et al., 2022).

To optimize sampling, RS-NeRF uses a grid-based sampling method. The method divides
the 3D space in which the scene is located into 1283 voxels. After that, model throws away
sample points that are located in empty voxels. Empty voxels are either located before or after
the ray hits something. Sample points in empty voxels are not used for input in the MLP which
speeds up the model. Additionally, rays are sampled simultaneously on custom CUDA kernels,
which further improves the training time of the model. CUDA kernels allow models to run
processes parallel to each other on GPU cores (Xie et al., 2023).

To handle multi-date satellite imagery with vehicles that are in different locations on differ-
ent images, CRFILL is implemented. CRFILL is an image-inpainting method that is able to
remove vehicles, restoring the vehicle-free appearance of the city, while using a minor amount
of computational power. CRFILL only needs to be applied to one image with the least amount
of vehicles, because it can be combined with RS-NeRF (Xie et al., 2023). Figure 16 shows
the vehicle removal performance of CRFILL and RS-NeRF separately and combined, indicating
much better results for the combined option (Xie et al., 2023).

Figure 16: The vehicle removal performance of RS-NeRF, CRFILL and when they are combined
(OURS) (Xie et al., 2023).
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RS-NeRF is tested on the same DFC2019 dataset as S-NeRF and Sat-Nerf, only using the
RGB imagery. A similar batch size of 1024 is used with N = 1024 sample points per ray.
Furthermore, RS-NeRF only uses 20% of the amount of neurons used in S-NeRF. Training
times are reduced to 6 minutes on a NVIDIA GPU with 12GB RAM. Table 4 shows the results
of RS-NeRF compared to S-NeRF. RS-NeRF outperforms S-NeRF on each research area while
reducing the training times from 8 hours to 6 minutes. Note that Sat-NeRF and EO-NeRF yield
more accurate results, however their training times are between 10 and 20 hours. The code for
RS-NeRF is not available to the public (Xie et al., 2023).

Table 4: Results of Xie et al. (2023) showing the MAE (m) for each area and NeRF variation.
The most accurate result is shown in bold for each research area.

2.6.6 SparseSat-NeRF (SpS-NeRF)

SpS-NeRF focuses on reducing the amount of satellite input imagery that is needed to produce
accurate DSMs using NeRF (L. Zhang & Rupnik, 2023). The NeRF model builds on the
architecture that is proposed in Sat-NeRF by Maŕı et al. (2022) and uses the guided sampling
strategy proposed by Roessle et al. (2022) in DDP-NeRF.

The guided sampling separates the sampling into two phases. To start, a first batch of
sampling finds the approximate location of the surface. The first batch is followed by a second
batch which increasingly samples at the approximate location to find the exact location (Roessle
et al., 2022). Figure 17 shows how the guided sampling is applied in SpS-NeRF (L. Zhang &
Rupnik, 2023).

Figure 17: Ray sampling as used in SpS-neRF, (a) shows the sampled image row, (b) shows the
first batch of sampling in gray with the estimated dense depths in pink and the second batch of
sampling in red, (c) zooms in on the sampling of some rays. (L. Zhang & Rupnik, 2023)

Compared to Sat-NeRF, two main changes are made for SpS-NeRF. Firstly, a low resolution
depth map is used which is generated through SGM or obtained through the Shuttle Radar
Topography Mission (SRTM). The SRTM provides a low resolution (250 x 250 m per pixel)
global dataset that can be used for supervision. The depth is included before the optimization
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of the network and because it gives the network a rough estimate of the 3D structure, the
network requires less input imagery. The second change involves correlation based uncertainty.
An uncertainty is measured through the differences of the low resolution depth maps. This
increases the robustness of the generated DSMs (L. Zhang & Rupnik, 2023).

It must be considered that SpS-NeRF does not include a method to handle transient objects.
Therefore, SpS is only tested on research area 214 of the DFC2019 dataset, which has 3 images
that are taken at roughly the same time (Le Saux et al., 2019). Additionally, SpS-NeRF is also
tested on a dataset which has Pléiades imagery of a natural environment in Djibouti (Labarre
et al., 2019). SpS-NeRF only uses RGB imagery and requires 2-3 images. A batch size of 1024
is used and N = 64 samples per ray per batch, the number of neurons for each MLP layer is not
specified. However, the network architecture is based on Sat-NeRF so h = 512 is assumed. The
training of the model took approximately 2 hours on a GPU with 40GB of RAM. It is difficult
to compare the training time with other NeRF models due to the large difference in RAM.

The results in Table 5 show that SpS-NeRF outperforms classic NeRF and Sat-NeRF. How-
ever, it must be noted that some parts of Sat-NeRF is not optimized for sparse imagery input.
Furthermore, the results indicate that SpS-NeRF performs particularly well for the Djibouti
dataset with low MAE values. The code to implement SpS-NeRF is publicly available on GitHub
(L. Zhang & Rupnik, 2023).

Table 5: Results of L. Zhang and Rupnik (2023), showing the MAE (m) fof the DFC2019 and
Djibouti dataset for both 2 and 3 input images.

2.6.7 Satellite Tensorial Radiance Fields (SatensoRF)

SatensoRF focuses on reducing the computational load and therefore also the training times for
NeRF. Furthermore, T. Zhang et al. (2024) propose to remove the additional inputs that are
needed for S-NeRF and Sat-NeRF, such as sun azimuth and elevation, which are not always
present in datasets. Lastly, SatensoRF eliminates the assumption of Lambertian reflectance for
the Earth’s surface (T. Zhang et al., 2024). A Lambertian reflectance assumes that the surface
perfectly diffuses light. In the real world, a bidirectional reflection is often present, especially
for surfaces that include water, asphalt roads or vegetation (W. Qin et al., 2001).

To address the first goal of reducing computational load, Level-of-Detail representations are
implemented. By creating different levels of detail with 3D voxel grids, the complexity of the
scene can be managed better, reducing computing times (T. Zhang et al., 2024). This method
is similar to the method used in RS-NeRF (Xie et al., 2023). The same technique is applied to
the volume density field of the Earth’s surface and the global hue bias. As described earlier,
the volume density determines the probability that something is present at a certain location.
The global hue bias adjusts the overall color tone of the scene, correcting for the sky as a light
source. On top of reducing training times, the proposed implementations optimize SatensoRF
for large scale satellite imagery (T. Zhang et al., 2024).

The second and third issues are addressed using a redesigned light field model that includes
bidirectional reflection properties. The light field model eliminates the solar information input
requirements of S-NeRF and Sat-NeRF. To handle transient objects in multi-date satellite im-
agery, they are treated as blackbox-noise components. To remove the noise, a total variation
regularization is applied, removing transient objects from the scene (T. Zhang et al., 2024).
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T. Zhang et al. (2024) report on using the same DFC2019 dataset, however they use different
AOIs to evaluate their model. Due to the different usage of the dataset, results are difficult to
compare, it is unclear why the MAE was not calculated for the same AOIs that other research
uses. Additionally, the batch size was set to 8096 rays for SatensoRF, while it was set to 1024
for S-NeRF and Sat-NeRF. The training time for SatensoRF took 2.8 hours compared to 7.8
and 10.3 hours for S-NeRF and Sat-NeRF respectively. All of the training was performed using
a 16GB RAM NVIDIA RTX3090 GPU. The results in Table 6 show that SatensoRF does not
produce more accurate results compared to Sat-NeRF. However, computing times are reduced
and the model does perform better considering novel view synthesis. The code for SatensoRF
is not available to the public (T. Zhang et al., 2024).

Table 6: Results of T. Zhang et al. (2024), showing the MAE(m) of each NeRF variation for the
017 and 159 areas of the DFC2019 dataset The most accurate results for each research area are
shown in bold.

2.6.8 Satellite Neural Graphics Primitives (SAT-NGP)

Similarly to RS-NeRF, SAT-NGP aims to improve computing times for the NeRF model, while
maintaining DSM quality (Billouard et al., 2024; Xie et al., 2023). However, RS-NeRF does not
produce relighting capabilities and Xie et al. (2023) use a separate inpainting method to process
transient objects such as cars.

SAT-NGP uses the foundation of S-NeRF and Sat-NeRF, by implementing a similar shading
model and network architecture (Derksen and Izzo, 2021; Maŕı et al., 2022). Instead of SIREN
activation, which is used in Sat-NeRF, the SAT-NGP MLP uses MISH activation. MISH acti-
vation can be considered a more flexible and smooth activation compared to ReLU and SIREN.
It improves the learning of neural networks by providing a smoother gradient and more com-
plex activations (Misra, 2020). Additionally, the multi-resolution hash encoding method from
Instant-NGP is used to speed up the model (Müller et al., 2022).

Another adaptation from SAT-NGP is the adoption of a robust loss function, developed by
Sabour et al. (2023). Firstly, an uncertainty image is learned as a network output. Areas with
many transient objects result in high uncertainty. After that, the loss function is constrained to
only use low uncertainty areas. This process smooths out the areas with transient objects, such
as cars, in the resulting DSM (Billouard et al., 2024).
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To refine the RPC camera models, bundle adjustment is applied. Additionally, the UTM-
based point coordinates are used similar to EO-NeRF (Maŕı et al., 2023). Again, the DFC2019
dataset comprising RGB satellite photos with a 0.3m pixel size is used. A batch size of 1024
rays is used with N between 4 and 256 samples per ray. The training takes approximately 15
minutes on a 12GB GPU.

Table 7 shows the results of Billouard et al. (2024) compared to S-NeRF, Sat-NeRF and
EO-NeRF. While SAT-NGP does not provide the most accurate results, it does speed up the
process from hours to minutes. Additionally, for most study areas the accuracy difference is only
minor compared to Sat-NeRF and EO-NeRF. The results are also visualized in Figure 18, it
must be noted that the MAE values differ for Sat-NeRF (2.009m in Table 7 compared to 4.31m
in Figure 18) due to differences in settings (20hrs training time in the table compared to 12hrs
mentioned for the figure). The code for SAT-NGP is publicized on GitHub (Billouard et al.,
2024).

Table 7: Results of Billouard et al. (2024), showing the MAE (m) for each research area and
NeRF variation. The most accurate result is shown in bold for each research area.

Figure 18: DSMs showing the GT LiDAR (left), SAT-NGP results (middle) and Sat-NeRF
results(right). SAT-NGP has a lower MAE in 14 minutes compared to Sat-NeRF in 12 hours
for AOI 214 (Billouard et al., 2024).
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2.6.9 Geometric Constrained NeRF (GC-NeRF)

GC-NeRF builds on Sat-NeRF and introduces multiple methods to improve DSM accuracy,
including z-axis scene stretching, an occupancy grid created from sparse point clouds, a geometric
loss term and DSM fusion (Wan et al., 2024).

Z-axis scene stretching is conducted because satellite scenes usually have a larger scale hor-
izontally compared to vertically. Stretching the z-axis of the scene makes the granularity in
the z-direction finer and increases the sampling density in the z-direction, thus increasing DSM
accuracy. Care must be taken not to overstretch the scene, which can lead to reduced model
performance. Figure 19 shows a visual representation of z-axis stretching.

Figure 19: Z-axis stretching showing the flat original scene (a), a suitable stretched scene (b)
and an over stretched scene (c) (Wan et al., 2024).

Instead of using altitude bounds to improve sampling, a sparse point cloud generated through
bundle adjustment is used to guide sampling for GC-NeRF. The sparse point cloud is converted
to an occupancy grid which divides the 3D scene in 1283 voxels. This allows empty voxels to be
skipped and sampling can be increased for the voxels where something is present. The approach
is similar to the methods of RS-NeRF and SatensoRF (Wan et al., 2024, Xie et al., 2023, T.
Zhang et al., 2024).

The introduced geometric loss term leads to a constrained scene geometry and makes the
scene surface thinner. As a result, the accuracy of the DSMs are greatly improved. Additionally,
GC-NeRF uses a multi-view DSM fusion strategy, to correct for large DSM errors near tall
objects. For this strategy, multiple DSMs are created from different viewpoints, which are then
merged into one DSM (Wan et al., 2024).

33



To test GC-NeRF, the same DFC2019 dataset with AOIs 004, 068, 214 and 260 is used
(Le Saux et al., 2019). Wan et al. (2024) indicate that N = 218 samples are used for each
batch of rays, but do not state the size of the batch. Training the model took 6 minutes on a
12GB NVIDIA RTX 3080 GPU. Table 8 shows that GC-NeRF is the most accurate compared
to S-NeRF and Sat-NeRF. The code for GC-NeRF is not available to the public (Wan et al.,
2024).

Table 8: Results of Wan et al. (2024), showing the MAE (m) for each research area and NeRF
variation. The most accurate result is shown in bold for each research area.

2.6.10 Bidirectional Reflectance Distribution Function NeRF (BRDF-NeRF)

L. Zhang et al. (2024) build on SpS-NeRF, focusing on accurate DSM reconstruction using sparse
satellite imagery. Additionally, BRDF-NeRF aims to include the bidirectional reflectance of the
surface of the Earth and is specifically designed to perform well on surfaces with anisotropic
reflectance characteristics (e.g. vegetation and bare soil). The Bidirectional Reflectance Distri-
bution Function (BRDF) indicates the way that materials reflect light as a result of different
lighting conditions and viewing angles. Different scattering patterns are visualized in Figure 20
(L. Zhang et al., 2024). To include the BRDF, a Rahman-Pinty-Verstraete (RPV) model is in-

Figure 20: Different scattering patterns including, Lambertian (a), RPV (b, c, e, f) and Micro-
facet (d) scattering (L. Zhang et al., 2024).

cluded in BRDF-NeRF (Rahman et al., 1993). The RPV model is suitable for satellite imagery
and uses three physics-based parameters. The parameters include the level of anisotropy, the
intensity of the reflectance of the surface cover and the relative amount of forward or backward
scattering. The parameter values are obtained through inversion of surface reflectance models
on observations (L. Zhang et al., 2024).
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To train BRDF-NeRF, a batch size of 1024 is used. A similar sampling method to SpS-
NeRF is adopted with N = 64 stratified sampling points for each ray followed by N = 64
guided sampling points. The model is trained on the Djibouti dataset used in SpS-NeRF and
a dataset on Lanzhou (China) consisting of 3 Pléıades 1B and 3 Pléıades 1A images (Labarre
et al., 2019). Two areas for each dataset with a size of 1.5 km by 1.5 km were used and training
took approximately 10 hours on a 40GB NVIDIA GPU. The results in table 9 show that BRDF-
NeRF achieves the most accurate results for each research area. It must be noted that Sat-NeRF
is not optimized for sparse satellite imagery input which has led to high MAE values. Code for
the BRDF-NeRF model is available to the public on GitHub, however, documentation is very
limited (L. Zhang et al., 2024).

Table 9: Results of L. Zhang et al. (2024), showing the MAE (m) for each research area and
NeRF variation. The most accurate result is shown in bold for each research area.
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3 Data

This section covers the datasets that are used in this research. The datasets are covered before
the methodology due to their influence on the methodology. Two different types of satellite
datasets are used in this research. Firstly, the DFC2019 dataset, consisting of Worldview-3
imagery, is used to answer sub-research questions 2 and 3 on accuracy and sensitivity. However,
the dataset is split in two ways, there is a distinction between AOIs that have already been
preprocessed and those that have not been preprocessed. Additionally, the DFC2019 data is
split into urban scenes comprising little vegetation and rural scenes, which have more vegetation
in a suburban environment.

The other satellite dataset consists of three scenes covered by Superview-1 imagery, Delft,
Den Haag and Golfcourse ”Het Rijk van Margraten” near Maastricht. The Delft and Den Haag
datasets have also been used by Claesen (2024). This dataset is used to answer sub-research
question 4 on the applicability of NeRF, and determine how NeRF can be applied to satellite
data different from DFC2019. An overview of the satellite imagery datasets is provided in
Table 10.

Table 10: Information on the dataset and its corresponding AOI, Satellite, Imagery data type,
Imagery resolution, and Number of images.
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3.1 The Data Fusion Contest 2019 (DFC2019) dataset

The DFC2019 dataset was released for a data fusion contest in 2019 by the Image Analysis and
Data Fusion Technical Committee of the IEEE Geoscience and Remote Sensing Society, the
Johns Hopkins University (JHU) and the Intelligence Advanced Research Projects Activity, to
boost the application of machine intelligence and deep learning to satellite imagery (Le Saux
et al., 2019).

The DFC2019 dataset comprises WorldView-3 panchromatic, 8-band multi-spectral and pan-
sharpened RGB images of both Jacksonville, Florida and Omaha, Nebraska. The WorldView-3
satellite is owned by Maxar and is still operational (Le Saux et al., 2019). The satellite was
launched on the 13th of August 2014 in a sun-synchronous orbit at an altitude of 617km.
Aboard the satellite is the Worldview-110 camera which is able to capture imagery at 0.31m
panchromatic, 1.24m for the visible and near-infrared bands, and 3.7m for the short-wave in-
frared bands. Currently, WorldView-3 captures approximately 680,000km2 of the Earth every
day (ESA, 2025).

For this research, only the Jacksonville dataset is used, which consists of 26 images taken
between 2014 and 2016. The imagery is divided into 54 different scenes (AOIs) which all have
been given a number. Only the pansharpened RGB images are used as input for the NeRF
model, which have a spatial resolution of 0.3m. In this research, a distinction is made between
the scenes that are preprocessed and the ones that are not. The scenes 004, 068, 214 and 260
are provided as a preprocessed dataset which means that the imagery is already clipped to a
certain AOI, and the RPCs are also enhanced using bundle adjustment. For all of the other
scenes, a preprocessing pipeline is used to prepare the data as input for NeRF.

In addition to the imagery, the DFC2019 dataset also includes airborne LiDAR data. The
LiDAR data is provided as a DSM with a resolution of 0.5m, and is considered ground truth
(gt). Furthermore, a classified raster file is also included, specifying different classes which are
listed in Table 11.

Table 11: The classification for the classified raster file that comes with the DFC2019 dataset
(Le Saux et al., 2019).

The DFC2019 data is downloaded for free from https://ieee-dataport.org/open-access/data-
fusion-contest-2019-dfc2019 (Le Saux et al., 2019). To provide a view of what the satellite images
look like, sample images of the selected rural and urban AOIs are shown in Figure 21. In total,
12 AOIs are selected, 6 in the urban category and 6 in the rural category.
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Figure 21: An overview showing the selected urban and rural AOIs of the WorldView-3 satellite imagery from the DFC2019 dataset.
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3.2 The Superview-1 dataset

Superview-1, also called the GoaJing-1 constellation, consists of four commercial Chinese satel-
lites that are owned by Beijing Space View Tech Co Ltd. The main goal of the satellites is
to capture data that can be used for land and forestry management, high accuracy mapping,
maritime research, intelligence and defense. The first 2 satellites were launched in December
2016, while the second 2 satellites were launched in January 2018. The satellites each weigh
560kg and capture approximately 700,000 km2 of the surface of the Earth every day. They
have a sun-synchronous orbit around the Earth at an altitude of 500km phased 90 degrees from
one another. The satellites are equipped with two sensors. A panchromatic sensor with a res-
olution of 0.5m and a multi-spectral sensor that has a resolution of 2m. The multi-spectral
sensor captures 4 bands including blue (0.45-0.52µm), green (0.52-0.59µm), red (0.63-0.69µm)
and Near-Infrared (0.77-0.89µm). The maximum size of a captured scene is 60km by 70km, and
the sensor uses a pushbroom technique (EOS, 2024).

Superview-1 data of the Netherlands is available as open data for the time period 2019-2023
through satellietdataportaal.nl. The data can be downloaded in multiple formats including 2m
RGB ortho, 0.5m RGB ortho, 0.5m GIS ready infrared, 0.5 GIS ready RGB and raw imagery.
For this research, the raw imagery is downloaded which includes both the panchromatic (0.5m)
imagery and RGB imagery (2.0m) in TIF format. However, only the RGB imagery is used
to determine the applicability of NeRF. Additionally, an XML file containing metadata for
the imagery is provided, as well as an RPC report in an RPB file format. Other datasets
available on satellietdataportaal.nl, such as Pleiades-NEO and Superview-NEO were also taken
into consideration for this research. However, due to the limited timespan of the available
imagery (2023-present), not enough images are available to use for NeRF input. The same
problem exists for the mosaic datasets of the Netherlands, which also differ in satellites over
time, making them unusable for NeRF (NSO, 2024).

3.3 The AHN dataset

The AHN contains three different endproducts including a LAZ pointcloud, DTM and DSM.
The LAZ point cloud is a compressed format of an LAS point cloud and provides the original
data. The point cloud includes information on the flight path, point intensity, classification,
datetime and more. As described earlier in Section 2.2 the DTM data comprises the elevation of
the bare surface of the earth without any buildings or vegetation on it, while DSM does include
these objects. Currently, 4 different AHNs are complete, with the 5th version in the making.
Table 12 shows the different versions of AHN with their respective collection time, standard
error and systematic error. For AHN4 the standard error and systematic error are both 5cm
which means that 68.2% of the points have an accuracy of 10cm, 95.4% of the points have an
accuracy of 15cm and 99.7% of the points have an accuracy of 20cm. It must be noted that
water is excluded from AHN (AHN, 2024). In this research, the AHN 4 dataset is used as the
hypothetical LiDAR gt DSM to explore the applicability of NeRF. Although the AHN does not
provide a perfect representation of the surface elevation, it is the most accurate data available.

Table 12: Table showing the AHN versions, their collection times, standard error and systematic
error.
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4 Methodology

This section will discuss the methods used to answer the research questions. The methodology
chapter is divided into separate sections for each sub research question.

4.1 Optimal NeRF model for DSM generation method (sub research question
1)

To determine the optimal NeRF model to use for this research, a comprehensive literature study
is executed. In total, 9 different NeRF models are specifically tailored to create DSMs of satellite
imagery. These models are evaluated based on multiple criteria. The most important criterion
is the availability of the code. The development of a new NeRF method is out of scope for this
research and therefore, an existing model will be used. To use and adjust the existing model,
the code has to be available. Secondly, due to limited computing power, computing times are
considered for selecting the optimal NeRF model. In general, NeRF is a computer-intensive
method and due to the limited timeframe and the limited computing power that is available,
it is important to select a NeRF that is efficient and fast. Lastly, the accuracy of the NeRF
methods is considered. The desired resulting DSMs should have the highest quality possible
for real-life use cases. The selected NeRF model will be used and adjusted to answer the other
research questions.

4.2 The accuracy of NeRF method (sub research question 2a and 2b)

The accuracy of the selected NeRF model is tested on both urban and rural environments.
The accuracy of NeRF for both environments will be determined using the DFC2019 dataset of
Jacksonville, Florida. An overview of the methodology for the accuracy determination is shown
in Figure 22.

To derive DSMs of Jacksonville, Florida, the DFC2019 dataset is downloaded from https://ieee-
dataport.org/open-access/data-fusion-contest-2019-dfc2019 (Le Saux et al., 2019). As described
earlier, the data is made up of a certain number of high-resolution pansharpened RGBWorldview-
3 satellite images. Additionally, raw RPCs are obtained which correspond to the full size of the
images for each AOI. Lastly, a ”Truth” folder is downloaded, the truth folder contains a classi-
fied raster, a ground truth (gt) LiDAR raster and a txt file describing the AOI characteristics
(number of pixel rows and columns). The AOIs 004, 068, 214 and 260 can be downloaded as a
preprocessed dataset, they are already cropped and have bundle adjusted RPCs. The accuracy
methodology can be divided into three phases, the data collection, data preprocessing, and the
results.

Data collection
In total, 12 AOIs are collected that are all placed in the urban category or the rural category.
Four of the AOIs (004, 068, 214 and 260) are preprocessed, while eight are downloaded as
unprocessed data. While selecting suitable AOIs, multiple criteria are taken into account. To
start, the AOI should fit in the description of an urban scene or a rural scene. The urban category
consists of areas with mostly buildings and the rural category consists of suburban areas where
more vegetation is present. Secondly, there needs to be a sufficient amount of imagery available,
for example, AOI 144 only has 3 images available. Although some NeRFs are optimized to only
use a few images for DSM generation (L. Zhang and Rupnik, 2023; L. Zhang et al., 2024), this
research required at least 10 images to be available.
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Lastly, a visual inspection is performed to check the LiDAR gt DSM and the imagery that
is available. It is important to check the imagery to make sure that there are no large transient
objects, such as houses that are removed or built during capture. The capture date of the LiDAR
gt DSM is unknown and it often shows a scene where buildings are missing although they are
present in the imagery, for example.

Data preprocessing
After data collection, the raw DFC2019 data needs to be preprocessed in order to fit the re-
quirements of a NeRF model. To preprocess the data, both the pipeline from bundle adjustment
and the pipeline for data preprocessing of SAT-NeRF are used (Maŕı et al., 2021; Maŕı et al.,
2022). The main code for the process, create satellite dataset.py, is shown in Appendix 9.1.
Both pipelines are publicly available on GitHub and are optimized to work together. To use the
pipelines, multiple python packages need to be installed including: gdal, rpcm, opencv-contrib-
python, jupyter, pillow, chardet, matplotlib, numpy, affine, fire, kornia, plyflatten, pyproj, py-
torch lightning, torchmetrics, PyYAML, rasterio, scipy, srtm4, utm, scikit image and numba. It
is important to install the correct version of each package due to dependencies. Sometimes, a
package could not be installed using pip, whenever that happens, the alternative conda is used.
Additionally, some paths need to be adjusted so that the pipelines can find the right files needed.
In addition to changing the paths, adjustments are made to the code to handle data different
from the 004, 068, 214, and 260 AOIs of the DFC2019 dataset. The pipelines are executed in
the command line using Windows Subsystem for Linux. The first step of the data preprocessing
pipeline is to crop the data of each selected scene to a smaller AOI consisting of 512 rows and
columns of pixels. The pixels have a size of 0.5m which means that each of the AOIs is 256m
x 256m in size. The reduction in size is needed to demand less from the computer hardware.
Furthermore, the LiDAR gt DSM and classified raster are only available for the cropped AOIs.
After that, the bundle adjustment pipeline is used to refine the RPC models for each AOI. The
RPC models are saved in a JSON file combined with image metadata, which includes: the image
height and width (number of pixels), sun elevation, sun azimuth, acquisition date, corner coordi-
nates of the AOI, center coordinates of the AOI, minimum altitude and maximum altitude. An
example of such a JSON file (AOI 004) is given in Appendix 9.2. After bundle adjustment, the
pipeline randomly selects a few images (two or three) for testing and creates a test.txt file listing
them. The other images are listed in a train.txt file and are used for training the NeRF model.
Altogether, the pipelines produce cropped satellite images as TIF files, JSON files containing
metadata and bundle adjusted RPCs, as well as test and train txt files containing lists of the
cropped images.
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Results
The outputs of the preprocessing pipelines are used as an input to run the NeRF model that
is selected during sub research question 1. Additionally, the LiDAR gt DSM and the classified
raster file, together with the txt file specifying the AOI are used. To apply the selected NeRF
model to data different from the 004, 068, 214 and 260 AOIs, some adjustments need to be made.
For example, in the utils.py code, in the predefined val ts function, the test images for each AOI
need to be added to assign a certain value. The utils.py code is provided in Appendix 9.3. The
model is executed through the command line in Windows Subsystem for Linux with a standard
configuration, a batch size of 1024 and 60,000 iterations. The batch size stands for the number
of rays that are passed through the model in a single optimization step. While the number
of iterations refers to the number of optimization steps that the model goes through during
training.

Three different outputs are evaluated after the model is run, a DSM, a difference DSM and
the error metrics. The error metrics include the Mean Absolute Error (MAE), Mean Error (ME)
and Maximum Error (Max E). The DSMs have a pixel resolution of 0.5m and provide insight
on how the model performs for different areas in the AOI. The difference DSM provides the
elevation deviation of the predicted NeRF DSM compared to the LiDAR gt DSM. Through the
difference DSM, areas can be identified where the NeRF model predicts poorly or particularly
well. Furthermore, the MAE provides the Mean Absolute Error. This metric gives the mean
deviation of the NeRF predicted DSM compared to the LiDAR gt DSM and normalizes negative
and positive deviations. The MAE is used as the main performance index to evaluate the
urban and rural NeRF predicted DSMs. The other error indexes ME and Max E, provide the
average deviation without normalizing positive and negative values, and the maximum deviation
respectively. Lastly, using the NeRF DSM and LiDAR gt DSM, elevation profiles are created
of two AOIs for both the urban and rural groups. The elevation profiles show both the NeRF
predicted DSM and LiDAR gt DSM for each AOI. These evaluations contribute to answering
subquestions 2a and 2b concerning the accuracy of NeRF in both urban and rural environments.

Figure 22 shows a schematic overview of the pipeline to answer sub research questions 2a
and 2b considering the accuracy of NeRF.
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Figure 22: Overview of the methodology considering the accuracy of NeRF (sub research ques-
tions 2a and 2b).
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4.3 Sensitivity of NeRF method (sub research question 3)

To determine the sensitivity of the selected NeRF model, two parameters are adjusted. The
effect of the number of training iterations and the effect of the batch size of rays for each
training step are assessed. The exact values of the parameters differ depending on the NeRF
model that is selected in sub research question 1. Both parameters are tested with 11 different
configurations. For each variation, the other parameters are kept at their defaults and the
effects are investigated on MAE values and runtime. The sensitivity is tested on the AOI 068
comprising an urban environment and on AOI 359 comprising a rural environment. Testing on
the two different environments allows to investigate sensitivity differences between them. The
analysis shows how the adjustment of a parameter influences the accuracy of the derived DSM.
A schematic overview of the sensitivity analysis pipeline is shown in Figure 23.

Figure 23: Pipeline to determine the sensitivity of the model considering the amount of rays
and number of iterations.

4.4 Applicability of NeRF method (Sub reseach question 4)

To determine the applicability of state-of-the-art NeRF to data different from DFC2019, a
study is conducted to determine what is needed for such a model to run. To examine this, three
different study areas are selected, Delft, Den Haag and the golfcourse ”Het Rijk van Margraten”
near Maastricht. Figures 24, 25 and 26 show the research areas of Den Haag, Delft and the
golfcourse respectively. The Delft and Den Haag study areas are selected due to their usage in
Claesen (2024). While the Golfcourse study area is selected due to its abundance of green, which
stays stable over time. For these study areas, Superview-1 satellite imagery is downloaded with
the accompanying metadata and RPC files as described in Section 3.1.

Figure 24: Map showing an overview of the satellite imagery and the location of the Delft AOI.
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Figure 25: Map showing an overview of the satellite imagery and the location of the Den Haag
AOI.

Figure 26: Map showing an overview of the satellite imagery and the location of the Golfcourse
AOI.

After downloading, it is investigated what is needed to preprocess the data in such a way
that it can be used as an input for NeRF. Additionally, the AHN data is used as the hypothetical
LiDAR gt DSM. The first step is to determine how the imagery can be cropped. Next, the RPCs
and metadata need to be adjusted and combined into one JSON file for each image. After that,
the LiDAR gt DSM, classified raster TIF file and the txt file with the AOI need to be prepared.
Through these steps, together with the literature research of research question 1, it is assessed
what the applicability of NeRF is, and what is needed to run the model with data different from
DFC2019. A schematic overview of the applicability method is shown in Figure 27

Figure 27: Pipeline to determine the applicability of a state-of-the-art NeRF model.
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5 Results

This section presents the results achieved in this research. Maps, tables, graphs, and schematic
overviews are produced to illustrate the results. The results are discussed in the order of the sub
research questions. Starting with the model selection, followed by the results on the accuracy
of the selected NeRF model. After that, the sensitivity analysis is presented, and finally, the
applicability of NeRF is covered.

5.1 NeRF Model selection

To select the optimal NeRF model to create DSMs from satellite imagery, multiple criteria are
considered. Firstly, the code needs to be available, because the time frame does not allow a
NeRF model to be built from scratch. This criterion already eliminates some of the NeRF
models including RS-NeRF, SatensoRF, GC-NeRF, and EO-NeRF (Maŕı et al., 2023; Wan et
al., 2024; Xie et al., 2023; T. Zhang et al., 2024). In addition to that, the models are evaluated
in terms of accuracy and training time. Higher accuracy is preferred to create more accurate
models, while lower training times are preferred due to time and hardware constraints of this
research.

Through thorough literature analysis, SAT-NGP is identified as the optimal option for this
research. SAT-NGP has its code openly available on GitHub. On top of that, the model has
a training time of 12 minutes on average for the 004, 068, 214 and 260 AOIs of the DFC2019
dataset, using a 12GB GPU (Billouard et al., 2024). Sat-NGP is only outperformed by RS-NeRF
in terms of training times (RS-NeRF does not have code available), while still achieving some
of the highest accuracies compared to other NeRFs (Billouard et al., 2024; Xie et al., 2023). As
mentioned in Section 2.6.8, SAT-NGP has a lower MAE in 14 minutes compared to Sat-NeRF in
12 hours for AOI 214. The SAT-NGP MAEs are 1.31, 2.03, 2.17m and 1.68m for the AOIs 004,
068, 214 and 260, respectively. Due to the hardware that is available for this research, a T1200
NVIDIA GPU with 4GB of memory, model efficiency is a high priority. Additionally, reduced
training times are useful when applying NeRF to create DSMs of larger areas, which might
be useful for large-scale case studies. Where other models have shortcomings concerning code
availability, computing times and accuracy, SAT-NGP allows for scalability while maintaining a
state-of-the-art accuracy. Figure 28 is adjusted from Figure 11 and now indicates the final model
that is selected and the models on which it is based. The figure shows that SAT-NGP is built on
S-NeRF and Sat-NeRF, adopting their shading model and network architecture. The methods
that are added to SAT-NGP include Instant-NGP, a robust loss function and MISH activation.
Instant-NGP improves the speed of the model through multi-resolution hash encoding. While
the robust loss function removes transient objects from the scene such as cars. Lastly, MISH
activation provides improved performance compared to ReLU and SIREN activations. The
methods are explained in more detail in Sections 2.6.5 (Instant-NGP), and 2.6.8 (robust loss
function and MISH activation).
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Figure 28: An overview of the NeRF models that are adjusted to create DSMs from satellite imagery, with their respective added methods. SAT-
NGP is selected from all of the models and is based on S-NeRF, Sat-NeRF and Instant-NGP, with the robust loss function and MISH activation
as added methods. SAT-NGP is the only NeRF model applied in this research, however, some code is borrowed from Sat-NeRF for preprocessing
purposes.
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5.2 DSM accuracy results

This section discusses the accuracy results of the SAT-NGP model for both urban and rural
scenes by comparing MAE, ME and Max E values, in addition to presenting the DSMs and
difference DSMs. In addition, elevation profiles are created for two urban and two rural AOIs to
highlight the performance of NeRF for different features. For each research area, the standard
configuration of SAT-NGP is used. The standard configuration has a batch size of 1024 rays,
including 4 to 256 samples for each ray and 60,000 iterations. The model took approximately
45 minutes for each AOI on a laptop with 32GB of RAM and an NVIDIA T1200 4GB graphics
card.

5.2.1 Urban accuracy results

Using SAT-NGP, DSMs are created of the urban AOIs 068, 165, 166, 167, 214 and 260 of the
DFC2019 dataset. The DSMs are shown in Figure 29. The DSMs show a high level of detail,
especially for AOIs 068, 165 and 214. AOI 166 shows two interesting artifacts with increased
elevation, which do not seem to be present in the satellite imagery or the LiDAR ground truth
(gt) DSM. Note that water features and construction sites are removed from the final DSMs.

Figure 29: Maps showing the DSMs of AOIs 068, 165, 166, 167, 214 and 260, created using
SAT-NGP.
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In addition to the DSMs, difference DSMs are created for each AOI, which are shown in
Figure 30. The difference DSMs are the result of subtracting the NeRF predicted DSM by the
LiDAR gt DSM. For comparison reasons, the AOIs all have the same symbology. It must be noted
that some deviations are larger than 50m, however, for the sake of detail, the current symbology
is used. Again, the two artifacts in AOI 166 are clearly visible, indicating a large deviation from
the LiDAR gt DSM. In general, the other AOIs show that there are some large errors near the
edges of buildings, where the height is either underestimated (blue) or overestimated (red).

Figure 30: Maps showing the difference DSMs of AOIs 068, 165, 166, 167, 214 and 260.

To provide a clear overview of the imagery, LiDAR gt DSM, NeRF predicted DSM, difference
DSM and MAE, Figure 31 is created. For comparison reasons, the height scale is the same for
the LiDAR gt DSM and the predicted DSM for each AOI separately. Additionally, the difference
DSMs have the same scale throughout all of the AOIs, ranging between -50 and 50m. The figure
shows that NeRF has difficulties with edges compared to the LiDAR gt DSM, resulting in errors.
Furthermore, earlier mentioned artifacts in AOI 166 are clearly visible.
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Figure 31: Overview of the urban AOIs, showing the satellite image, LiDAR gt DSM, NeRF
predicted DSM, Difference DSM and the MAE in meters.
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To highlight the performance of NeRF in different areas, Figure 32 is created, showing
elevation profiles of the 068 and 166 AOIs. The elevation profile of the 068 AOI shows that
the SAT-NGP DSM is relatively accurate and lies close to the LiDAR gt DSM. However, at
a distance of 60m there are some larger deviations. Additionally, there are some small offsets
near the edge of the building at 30m distance. The small offset results in high errors due to
the height of the building, which is around 30m. The 166 AOI elevation profile shows the large
DSM deviations in the parking lot around 50m distance and 200m distance. In general, both
elevation profiles also show that the NeRF predicted DSM is smoother compared to the LiDAR
gt DSM, which has sharper edges.

Figure 32: Elevation profiles of the 068 and 166 AOIs. The LiDAR gt DSM is shown in blue
and the SAT-NGP DSM is shown in red. Note that the height scale differs between the AOIs.
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5.2.2 Rural accuracy

The resulting DSMs of the rural AOIs 004, 017, 105, 203, 359 and 559, are shown in Figure 33.
Again, the water features are clipped from the DSM. The rural DSMs look less sharp compared
to the urban DSMs. AOI 017 has a highway that runs through the scene, which should be
smooth. However, the DSM shows interesting features on the road that should not be there.
In general, the elevation of the road is too high. AOI 105 also has some interesting features.
Although the fields are flat in the middle left area of the scene, the yellow areas indicate that the
fields are elevated in the NeRF predicted DSM compared to the LiDAR gt DSM. Note that the
AOIs have different symbology for the height to maintain detail, so they cannot be compared
to each other.

Figure 33: Maps showing the NeRF predicted DSMs of AOIs 004, 017, 105, 203, 359 and 559.
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Figure 34 shows the difference DSMs for the rural AOIs. AOIs 017 and 105 stand out with
large red areas, indicating an overestimation of the height by the NeRF model. For AOI 017,
the entire highway is overestimated, while for AOI 105, the fields are overestimated. In addition
to the fields, there is also a train visible in the error figure of AOI 105 in the bottom left (blue
line). In general, many trees are visualized in blue, indicating an underestimation of their height.
Additionally, the edges of trees are sometimes difficult to estimate for the NeRF model, as can be
seen in AOIs 004, 203, 359 and 559 where trees often have a dark red line around them. Lastly,
some thin lines of error can be seen in the AOIs 004, 017 and 203. These lines are suspended
cables in the air that are ignored by NeRF but not by the LiDAR scanner.

Figure 34: Maps showing the difference DSMs of AOIs 004, 017, 105, 203, 359 and 559.
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Figure 35 shows an overview of the rural AOIs, with RGB imagery, LiDAR gt DSM, predicted
DSM, difference DSM and MAE values. Again, it must be noted that the difference DSMs have
the same scale, while the LiDAR gt DSM and predicted DSM only have the same scale for the
same AOIs. The figure shows that the NeRF predicted DSM is often less sharp. The large errors
of AOIs 017 and 105 are also clearly visible between the DSMs. Additionally, tree removal can
be seen by the reduction of yellow dots in AOIs 004, 359 and 559.

54



Figure 35: Overview of the rural AOIs, showing the satellite image, LiDAR gt DSM, NeRF
predicted DSM, Difference DSM and the MAE in meters.
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Figure 36 shows the elevation profiles of AOIs 017 and 105. The 017 AOI has the highest
MAE value (4.71) of all AOIs, and the elevation profile clearly visualizes the large errors. The
highway between 160 and 200 is correctly interpreted as a flat surface. However, the elevation
is estimated to be higher compared to the vegetation on the sides, which is not the case in
real life. Additionally, the SAT-NGP model also performs poorly on the left side of the image,
where large errors are located. The elevation profile of AOI 105 also clearly shows the errors
of the SAT-NGP DSM. The elevation of the flat fields at the distances of 0-40m and 80-140m
is severely overestimated. In addition, the removal of trees is shown between 50-80m. Lastly,
the SAT-NGP model also fails to predict the angled roofs at 160-180m and 200-220m, where it
estimates a flat surface.

Figure 36: Elevation profiles of the 017 and 105 AOIs. The LiDAR gt DSM is shown in blue
and the SAT-NGP DSM is shown in red.
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5.2.3 Accuracy comparison of urban and rural scenes

The MAE results are shown in Table 13, where a distinction is made between urban and rural
datasets. Additionally, the number of images, the Mean Error (ME) and Maximum Error (Max
E) are provided.

Table 13: MAE, ME and Max E values in meters and the number of images that are used for
the urban and rural scenes. The two lowest MAE values are in bold for both the urban and
rural scenes.

Table 13 shows that the SAT-NGP model, on average, has a higher MAE value for urban
scenes compared to rural scenes. The average MAE for urban scenes amounts to 2.03m, while
the average MAE for rural scenes amounts to 2.67m. Another interesting thing to note is that
the four lowest MAEs are AOIs 004, 068, 214 and 260. These are the AOIs that are used in
almost every research involving DSM creation from satellite imagery using NeRf. The scene
with the highest accuracy is the urban 068 scene, while the lowest accuracy is achieved for the
rural 017 scene. The number of images is provided to give insight and determine if there is
a relation between the number of images and the MAE. Figure 37 shows a plot of the MAE
and the corresponding number of images. From the figure, it can be seen that no clear trend
is present. Although the MAE values are lower for urban scenes compared to rural scenes, the
Max E is much larger. The maximum negative and positive deviations from the ground truth
are much higher for urban scenes. 3D visualizations of the DSMs are shown in Appendix 9.4.
Furthermore, the ME shows that, for the rural AOIs, the SAT-NGP DSM is higher on average.
The urban scenes do not show the same trend, as AOIs 166 and 260 have a negative mean error.

Figure 37: Graph showing the MAE plotted against the number of images.
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5.3 NeRF sensitivity results

This section discusses the results of the sensitivity analysis for SAT-NGP, comprising both the
number of iterations and the batch size. The sensitivity analysis is performed on both the urban
AOI 068 and the rural AOI 359. This allows investigating differences between urban and rural
scenes in terms of the sensitivity of SAT-NGP.

5.3.1 Number of iterations sensitivity results

Table 14 shows the number of iterations, the corresponding MAE and the runtime of urban AOI
068 and rural AOI 359. In addition, a graph is provided in Figure 38, showing the number of
iterations versus the corresponding MAE on the primary axis (left) and the number of iterations
versus the corresponding runtime on the secondary axis (right).

Table 14: The MAEs and runtime of the SAT-NGP model for each configuration of the number
of iterations and AOI.
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Figure 38: Graph showing the MAE versus the number of iterations on the primary axis (left)
and the runtime versus the number of iterations on the secondary axis (right), for both the 068
AOI and the 359 AOI.

Table 14 and Figure 38 show that the MAE decreases when less than 30,000 iterations are
used for the SAT-NGP model. This trend is similar between the urban 068 AOI and the rural
359 AOI. When more than 30,000 iterations are used, the MAE does not seem to improve.
The highest MAE values are achieved using 45,000 iterations for the rural dataset. While the
highest MAE value is the same for 45,000 iterations and 60,000 iterations for the urban dataset.
An interesting observation is that the runtime linearly increases with the number of iterations.
These results are further evaluated in the Discussion section of this research.
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5.3.2 Batch size sensitivity results

The results of the batch size sensitivity analysis are provided in Table 15 and Figure 39. It
should be noted that the batch size is capped at 4096 for SAT-NGP. Table 15 shows the AOI,
the batch size, and the corresponding MAE and runtime. In addition, Figure 39 shows a plot of
the table with the MAE versus the batch size on the primary axis (left) and the runtime versus
the batch size on the secondary axis (right).

Table 15: The MAEs and runtime of the SAT-NGP model for each batch size and AOI.

Table 15 and Figure 39 show that on average the runtime increases with increasing batch size
from 768 upward, for both the 068 and 359 AOIs. However, both AOIs also have an increased
run-time when the batch size is lower than 512. Concerning MAE, it seems that there is little
change when changing the batch size, as both lines are relatively horizontal. Both AOIs show
their lowest MAEs for a batch size of 2048 and the highest for a batch size of 256. The results
are further evaluated in the Discussion section.
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Figure 39: Graph showing the MAE versus the batch size on the primary axis (left) and the
runtime versus the batch size on the secondary axis (right), for both the 068 AOI and the 359
AOI.

5.4 NeRF applicability results

This section covers what is needed to apply NeRF to data different from the DFC2019 dataset.
For the imagery, it is important that it has RGB bands, preferably with a high resolution,
depending on the application. Higher resolutions will provide the NeRF model with more color
information, but will also increase runtime. Additionally, an RPC report needs to be available,
as well as metadata covering the sun elevation, sun azimuth, and the acquisition data. After
downloading the data, the first step is to preprocess the data to fit the input required by NeRF.
As a starting point, the input adapter script is used from the Satellite Surface Reconstruction
pipeline, which was also used by Claesen (2024), for his thesis (Bullinger et al., 2021).
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Claesen (2024), only used the script to crop the panchromatic images of the Superview-1
satellite constellation. However, to use it for NeRF, the script has to be adapted to handle RGB
imagery, RPCs and metadata. The first step is to adapt the script to crop the RGB imagery,
which has a different spatial resolution (2.0m) compared to the panchromatic imagery (0.5m).
The coordinates of the upper left and lower right corners are provided in the pipeline.toml script.
In this script, the coordinate system also needs to be set, which is 17N in this case. After that,
the script needs to be able to combine each cropped image with the corresponding RPC and
metadata. The RPC and metadata are then adjusted to the new cropped image and combined
into one JSON file. The JSON file should have the same parameters as the JSON files that are
used for the DFC2019 dataset. That includes the minimum and maximum height, the number
of rows and columns, sun elevation, sun azimuth, acquisition date, geojson coordinates, feature
type (polygon in this case), center coordinate, and the bundle adjusted RPC report. As discussed
in Section 2.4, the bundle adjusted RPC report needs to consist of 10 normalization constants
and 78 coefficients, which describe the geometric relation between the 2D image coordinates and
the 3D ground coordinates.

In addition to the preprocessed imagery with the JSON files, a classified TIF file of the AOI
is needed. For this file, each cell has to align exactly with the preprocessed imagery, they need
to be in the same coordinate system and have the same cell size. Table 16 shows the classes
that the TIF file must have. The literature does not state how these classified files are produced
for the DFC2019 dataset (Le Saux et al., 2019). It can be done either manually or through
an automated classification pipeline. Next to the classified TIF file, a ground truth DSM is
also needed. Again, the pixels of the ground truth DSM need to align exactly with the pixels
of the images and thus the final predicted DSM. A resampling step might be needed, as most
LiDAR gt datasets have a higher spatial resolution than RGB satellite imagery. The ground
truth DSM should also be from approximately the same moment in time as the imagery. This
will ensure that there are no features located in the imagery that are not present in the ground
truth. Lastly, three txt files need to be created. One txt file specifying the number of rows
and columns in the imagery and the cell size, and two specifying the test imagery and the train
imagery. This is mainly important for the image reconstruction evaluation of NeRF. For more
than 20 images, 3 test images are indicated and for less than 20, 2 test images are indicated.
All of the other images are considered training imagery.

Table 16: Classification scheme that needs to be used as input for NeRF models.

To run the NeRF model, adjustments need to be made in the code when data different
from DFC2019 is used. Several scripts have to be altered including the utils.py, where the
predefined val ts function needs to be adjusted. All files need to be in the same paths that are
used in the code, or the paths need to be adjusted. A simplified overview of the steps that are
required to apply NeRF to a dataset different from DFC2019 is shown in Figure 40.

To summarize, a NeRF model needs RGB satellite imagery (TIF), metadata and RPCs
(JSON), a ground truth DSM and a classified raster file (TIF). When these files are obtained,
some preprocessing needs to be done, followed by some adjustments to the NeRF model. It is of
vital importance that all of the files are aligned properly, otherwise the model will not work. If
all of the files are preprocessed correctly and are located in the proper paths, the NeRF model
can be run on a new dataset.
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Figure 40: Simplified pipeline showing how NeRF can be applied to a dataset different from
DFC2019.
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6 Discussion

This section covers the evaluation of the results. The results are explained and their implications
are investigated to answer the research questions. Each sub research question is separately
covered with a section on the evaluation, followed by a subsection summarizing the takeaways
(conclusions) and indicating the research limitations. The answers to the sub research questions
lead to the final answer of the main research question in Section 7, the Conclusions.

6.1 Evaluation of the model selection (sub research question 1)

What is the optimal NeRF model to use for this research, considering available code, computing
time and accuracy?

The first sub research question involved a literature research to determine the optimal NeRF
model for this research. The literature research provided a clear and comprehensive overview of
the NeRF models that are currently available for DSM creation from satellite imagery. Through
literature research, nine different NeRF models are identified that are optimized to create DSMs
from satellite imagery. The models are evaluated on three different factors. Firstly, the code
needs to be available, secondly, the low computing times are required and thirdly, the accuracy
needs to be as high as possible. Of the nine NeRF models, the SAT-NGP model is selected for
this research, due to the code availability, low computing times and high accuracy (Billouard
et al., 2024).

The result does not imply that SAT-NGP is the optimal NeRF model for every research
considering DSM creation from satellite imagery using NeRF. When computing times are not
an issue and sufficient hardware is available, Sat-NeRF would provide a better option. Sat-NeRF
reaches MAEs of 1.29, 1.25, 1.68 and 1.624 for the AOIs, 004, 068, 214 and 260 respectively.
While SAT-NGP only reaches MAEs of 1.45, 1.38, 2.06 and 1.81 for the same AOIs. Addi-
tionally, the Sat-NeRF code is openly available on GitHub with detailed documentation on
how to implement the model (Billouard et al., 2024;Maŕı et al., 2022. Another option could
be SpS-NeRF, which can run with only 2 or 3 satellite images. However, SPS-NeRF needs a
low-resolution depth map (SRTM for example) and is less accurate (2.86m MAE for 214 AOI).
It would be a useful model when there is little available imagery and the focus is on natural
areas (L. Zhang & Rupnik, 2023).

Through the addition of Instant-NGPs multi-resolution hash encoding, SAT-NGP is able to
decrease computing times from 10+ hours to minutes (depending on the hardware) (Billouard
et al., 2024; Müller et al., 2022). According to literature, future versions of NeRF that are
optimized to create DSMs from satellite imagery are likely to also use this technique (Billouard
et al., 2024; Müller et al., 2022; Xie et al., 2023). The reduced computing times make the NeRF
models available to a wider public, improving their applicability to real use cases in the future.
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6.1.1 Model selection takeaways and limitations (sub research question 1)

Evaluating the model selection research question, there are some takeaways and limitations.
SAT-NGP is considered the optimal model for this specific research based on code availability,
training time and accuracy.

However, although the literature research is comprehensive and thorough, there are some
shortcomings. More factors could be taken into account, such as ease of implementation, making
the literature research more complete. Additionally, limiting the model choice to models with
code openly available severely decreases the available options. Some of the models that perform
best in terms of accuracy and computing times are excluded, such as EO-NeRF and RS-NeRF
(Maŕı et al., 2023; Xie et al., 2023). Instead of excluding these models beforehand, efforts could
be made to contact the scientists directly and ask for the code. Limiting the model selection too
much on training times could also be avoided. An option could be to acquire improved hardware
through contacts at the university or at CGI, enabling more accurate, computer intensive models
to be incorporated.

6.2 Evaluation of the accuracy results (sub research question 2a and 2b)

What accuracy does NeRF achieve using high-resolution RGB satellite imagery of urban and
rural environments?

The second sub research question covers the accuracy of NeRF in both an urban and a ru-
ral environment. Additionally, a distinction can be made between the standard AOIs (004,
068, 214 and 260) that are used for nearly all NeRF DSM research, and other AOIs from the
DFC2019 dataset (Le Saux et al., 2019). DSMs are created for 12 AOIs in total, of which 4
are standard ones used in most research and did not need any preprocessing. The other 8 AOIs
are collected as raw data from the same DFC2019 dataset and need to be preprocessed using
the bundle adjustment and satellite dataset preparation pipelines (Maŕı et al., 2021; Maŕı et al.,
2022).

6.2.1 Evaluation of urban accuracy results (sub research question 2a)

The NeRF predicted DSMs of urban areas have an average MAE of 2.03m, varying between
1.38m and 2.52m. Some large deviations are visible in the difference DSMs of Figure 30. The
large Max E (Table 13), especially compared to the rural difference DSMs (Figure 34), are partly
due to the increased height differences in urban areas. However, some reoccurring errors can be
identified. The SAT-NGP model struggles with the sharp edges of buildings, where high errors
occur, visualized by dark blue or red pixels. The edges of buildings often have shadows near
them, which reduces the information that NeRF can gather from the imagery. The reduced
information leads to errors in the predicted DSM. The issue of predicting heights of areas that
are shaded is a problem that occurs in all of the NeRF models that have been developed for
DSM generation from satellite imagery (Billouard et al., 2024; Derksen and Izzo, 2021; Maŕı
et al., 2022; Maŕı et al., 2023; Wan et al., 2024; Xie et al., 2023; L. Zhang and Rupnik, 2023;
T. Zhang et al., 2024; L. Zhang et al., 2024).

The errors in AOI 166 stand out, because a flat parking lot is present at that location, this
is clearly visualized in the elevation profiles shown in Figure 32. SAT-NGP uses a robust loss
function to deal with transient objects, such as cars. The model flattens out the DSM if objects
are visible in some of the images but not all of them (Billouard et al., 2024). The most likely
explanation for the errors is that the imagery is too inconsistent. There is a high variability for
these parking lots due to differences in cars, and parking lots cover a large part of the imagery.
As a result, NeRF struggled to find the height of these locations. This means that the SAT-NGP
model has some flaws and is not always able to predict flat surfaces well, especially when there
is high variability in the imagery.
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The inability to predict flat surfaces is also common in other NeRF models, including S-
NeRF and Sat-NeRF (Derksen and Izzo, 2021; Maŕı et al., 2022). The urban accuracy results
indicate that NeRF does not solve the difficulties experienced by Claesen (2024), concerning the
reduced accuracies in areas where limited feature matching is possible. These areas include flat
surfaces and shadows.

6.2.2 Evaluation of the rural accuracy results (sub research question 2b)

The MAE results in Table 13 show that SAT-NGP achieved the highest accuracy for the urban
AOIs. The rural AOIs have an MAE which is 0.64m higher on average, varying between 1.45m
and 4.71m. The result indicates that SAT-NGP struggles more in areas with increased vegeta-
tion. This is confirmed in Figure 34, which shows that trees are either underestimated (blue) or
their edges are overestimated (red). The underestimated trees can be explained by the robust
loss function that is used in SAT-NGP (Billouard et al., 2024). As mentioned before, the robust
loss function removes transient objects from the predicted DSMs. The function is designed to
remove cars from urban areas, however, in this case, it removed trees. The visual representation
of the trees changes through the images due to seasonality and weather conditions. As a result,
the model sees it as a transient object and removes some of the trees, resulting in an underes-
timated height, as can be seen in Figure 36. Interestingly, the ME in Table 13 indicates that
there is a general overprediction by SAT-NGP compared to the LiDAR gt DSM. Furthermore,
the edges of trees are difficult to model due to shadows, which, as discussed before, reduce the
information for the model in certain areas. The errors around the edges occur due to the LiDAR
measuring very sharp edges and the NeRF model smoothing the edges. While this study was
conducted, another research is published that focused on the impact of solar correction on the
performance of NeRF models that create DSMs from satellite imagery. In this research, a land
cover study is performed, which indicated that the accuracy of the DSMs was higher for areas
with more trees (Chakraborty et al., 2025). This is contradictory compared to this study, which
has opposite results. However, this study used the SAT-NGP model while Chakraborty et al.
(2025) used standard NeRF, S-NeRF and Sat-NeRF. Additionally, AOIs 260 and 412 are used
for the investigation compared to 068 and 359 in this research. Interestingly, Chakraborty et al.
(2025) do not mask the construction site from the images of the 260 AOI. Furthermore, some
AOIs (017, 359) are included for the MAE analysis, which do not have a LiDAR gt DSM that
corresponds to the imagery. The use of different models and different AOIs makes it difficult to
compare between the studies, and it indicates that further research is needed.

Continuing on the results of this research, the train that shows up in the bottom left of
the difference DSM of AOI 105 in Figure 34 can be attributed to a train being present while
the LiDAR was scanning. The train was not consistently present in the imagery and is thus
considered a transient object resulting in removal by the robust loss function of SAT-NGP.
Figure 33 shows that the model correctly predicts a flat surface at the location of the train.
Lastly, it is interesting to look at AOIs 017 and 105 due to the large errors located on flat
surfaces. In AOI 017 the highway is predicted to be much higher than the LiDAR gt and AOI
105 shows a similar trend for the flat fields in the middle left of the image. As mentioned before,
other papers report on the same issue (Derksen and Izzo, 2021; Maŕı et al., 2022). The errors
indicate that NeRF has difficulties with large flat surfaces such as grass fields and highways.
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Another interesting thing to note about the observations is that nearly every NeRF DSM
research uses the AOIs, 004, 068, 214 and 260, which have the lowest MAE values (Derksen
and Izzo, 2021; Maŕı et al., 2022; Xie et al., 2023. The usage of these AOIs makes the model
performances comparable, however, it can also create a bias. When research only focuses on
improving the MAE for these AOIs, it might introduce a bias and overfit the models to perform
well for these AOIs specifically. Currently, only EO-NeRF, SpS-NeRF, SatensoRF, BRDF-NeRF
and a solar correction impact study, included other research areas as an addition to the standard
(Maŕı et al., 2023; L. Zhang and Rupnik, 2023; T. Zhang et al., 2024; L. Zhang et al., 2024;
Chakraborty et al., 2025). The NeRF model accuracies are also plotted against the number
of images that are used to investigate if the model performs better or worse with more or less
images. The results do not indicate a correlation between the two factors. In fact, it seems
that the quality and content of the images, e.g. the consistency, different angles, little shadows,
vegetation and sharpness, are more important for the accuracy of the final DSM.

6.2.3 Accuracy research takeaways and limitations (sub research questions 2a and
2b)

Evaluating the accuracy sub research questions, there are some key takeaways. Contrary to
other research, the results have shown that NeRF performs better, in terms of accuracy, on
urban environments compared to rural environments with increased vegetation (Chakraborty
et al., 2025). However, the urban environments have a larger Max E due to the increased height
differences as a result of tall buildings. This explains the large maximum error for AOI 167 for
example, where a skyscraper is present in the scene (Table 13). The main features that cause
errors in the NeRF predicted DSMs are edges of buildings, shadows, trees and flat surfaces. The
flat surfaces can include both highways or grass fields (AOIs 105 and 167). Difficulties with
shadows and flat surfaces have also been identified in other studies (Chakraborty et al., 2025).
The number of images does not affect the performance if it lies between 10 and 24 images, the
quality and content of the imagery are the most important.

However, when drawing these conclusions about accuracy, care must be taken and limita-
tions of the research have to be taken into account. For example, the accuracy is only tested
on DFC2019 data, and not on other data. The DFC2019 datasets consist of pansharpened
Worldview-3 imagery with an RGB resolution of 0.3m. The pansharpening process could in-
fluence the performance of the NeRF model, leading to decreased accuracy. Additionally, the
model might perform differently when using images that have a higher or lower resolution. A
higher resolution could lead to better model performance for both rural and urban environments
or improve the performance in only one of these. Therefore, conclusions can only be drawn for
this specific dataset. The DFC2019 dataset does not report the date of acquisition of the LiDAR
scan, which also causes uncertainty (Le Saux et al., 2019). As stated in Section 4.2, some of
the DFC2019 AOIs cannot be used due to differences between the imagery and the LiDAR gt
DSM. Undetected discrepancies between the LiDAR gt DSM and the imagery might be present
in the other AOIs. As a result, some errors can be introduced that are not caused by the NeRF
model, leading to an underestimation of the accuracy of the NeRF model. Furthermore, research
has pointed out that LiDAR is not a perfect method in terms of accuracy and the LiDAR gt
DSM might not provide a true representation of the real elevation (Liu, 2008). Additionally,
the number of AOIs that are used in this research could be increased to create more certainty
in determining the performance of the model for both urban and rural environments.
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6.3 Evaluation of the sensitivity results (sub research question 3)

What is the sensitivity of the NeRF model used considering the number of iterations and batch
size, in both urban and rural environments?

The third sub research question involved the sensitivity of the NeRF model towards the two
parameters number of iterations and batch size. As mentioned in Section 1.1, until now, the
sensitivity has only been tested considering the number of sample points for each ray and the
number of hidden layers in the MLP network (Maŕı et al., 2023).

6.3.1 Evaluation of the number of iterations sensitivity results

Different NeRF models are often executed with different numbers of iterations. For example, S-
NeRF uses 30,000 iterations, while Sat-NeRF uses 300,000 iterations and GC-NeRF uses 15,000
iterations (Derksen and Izzo, 2021; Maŕı et al., 2022; Wan et al., 2024). For a NeRF model, the
number of iterations determines how many times a batch of rays is sampled and passed through
the model. After running the model 22 times with 11 different configurations for the number of
iterations for both a rural and urban AOI, the results are evaluated. Firstly, the results show
an increase in the runtime as the number of iterations is increased. Secondly, the MAE values
seem to be nearly stable after 15,000 iterations. If a lower number of iterations is used, the
MAE values increase and vertical accuracy decreases. Both the rural and urban AOIs 359 and
068, show similar trends. However, Figure 38 shows that the 068 MAE improves more sharply
when the number of iterations is increased between 1,000 and 15,000. From the results, it can be
concluded that, for SAT-NGP, a lower number of iterations can be used than the recommended
60,000 while still maintaining vertical accuracy. After 15,000 iterations, the MAE values improve
minimally, while the run time is reduced by more than 50%. The reduction in runtime improves
the applicability of NeRF in real-life use cases and makes the models available to a wider public
with limited hardware. Additionally, it provides computing space for other methods to be added
to the model and further improve its accuracy. Furthermore, the sensitivity analysis of iterations
shows that the results achieved by Billouard et al. (2024) are even more impressive. Compared
to Sat-NERF, which takes 20 hours to run, SAT-NGP improves even more on runtime than is
reported if fewer iterations are used (Maŕı et al., 2022).

6.3.2 Evaluation of the batch size sensitivity results

The batch size refers to the number of rays that are sampled by the model and passed through
in a single iteration. Across the different NeRF models, the batch size is mostly kept at 1024,
this is the case for S-NeRF, Sat-NeRF, EO-NeRF, RS-NeRF, SpS-NeRF, SAT-NGP and BRDF
NeRF ( Billouard et al., 2024; Derksen and Izzo, 2021; Maŕı et al., 2022; Maŕı et al., 2023; Xie
et al., 2023; L. Zhang and Rupnik, 2023; L. Zhang et al., 2024). Notably, SatensoRF is the only
other NeRF model that uses a different batch size of 8096, while the authors of GC-NeRF do
not report on their batch size (Wan et al., 2024; T. Zhang et al., 2024).

The results of the batch size sensitivity analysis show that the MAE decreases for both the
068 and 359 AOIs from a batch size of 256 until 1024. A batch size of more than 1024 does not
seem to improve the performance of NeRF for both AOIs. Investigating the runtime, the results
show a decrease between batch sizes 256 and 768 and an increase after 768. From the results,
it can be interpreted that a higher batch size after 768 does not lead to improved performance
of the SAT-NGP model. It seems that a batch size of 1024 is the most optimal for SAT-NGP
considering the runtime and accuracy, which is in line with the recommendations of Billouard
et al. (2024) and most other NeRFs. The sensitivity analysis shows little difference between
AOIs 068 and 359, indicating no sensitivity differences between urban and rural scenes.
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6.3.3 Sensitivity research takeaways and limitations

The sensitivity analysis provides valuable insight into the influence of both the number of it-
erations and the batch size on the accuracy of SAT-NGP. Increasing the number of iterations
only has a noticeable decreasing effect on MAE values up to 15,000 iterations, while the batch
size shows that the optimal size is 1024 considering MAE values and runtime. The runtime
increased for both parameters from a certain point while no improvement was made on MAE
values. Therefore, this sensitivity analysis has shown that for SAT-NGP, training times can be
reduced by 50% while maintaining accuracy. This can lead to a wider use of the SAT-NGP
model due to reduced hardware requirements. In addition, it improves the applicability of the
model for real-life use cases, because larger study areas can be investigated with less computing
time.

However, some limitations need to be taken into account when drawing these conclusions.
To start, the sensitivity analysis is only conducted on two research areas, which is limited.
Including more research areas would strengthen the results, but is not feasible for this research
due to time restrictions. Furthermore, results point out little difference between urban and rural
areas considering the sensitivity to iterations and the batch size. Including more research areas
would also strengthen this conclusion. Although the SAT-NGP model is run 44 times for this
sensitivity analysis, more different configurations could also improve the results. For example,
different batch sizes and the number of iterations could be tested in combination, such as running
NeRF with many iterations and a small batch size. Additionally, the number of iterations could
be tested with much higher numbers than 150,000 to see if MAE results could improve. It
would also be interesting to investigate the sensitivity for other parameters, such as the number
of sample points for each ray, or the number of hidden layers in the MLP. As mentioned before,
while conducting this research, another study was published by Chakraborty et al. (2025), who
researched the impact of solar correction on NeRFs that create DSMs from satellite imagery.
Chakraborty et al. (2025) test the model performance of standard NeRF, S-Nerf and Sat-NeRF
considering image reconstruction and DSM accuracy (MAE). Instead of changing parameters,
they tested the performance with and without solar correction. Their results show that solar
correction improves the results for S-NeRF and Sat-NeRF. It is interesting to note that similar
to this research, Chakraborty et al. (2025) use more AOIs than the preprocessed 004, 068, 214
and 260 AOIs. However, they include AOIs such as 017 and 031, which this study has pointed
out, do not have a LiDAR gt DSM that corresponds with the imagery. It would be beneficial to
conduct sensitivity analysis on other NeRF models, so a conclusion can be drawn on the impact
of the number of iterations and the batch size on NeRF models in general.

6.4 Evaluation of the applicability results (sub research question 4)

What is the applicability of NeRF and what is needed to use NeRF on data different from
DFC2019?

The fourth sub question investigates the applicability of NeRF and how to use it on data other
than the DFC2019. To answer the question, an applicability research is executed on SAT-NGP,
the selected model of the first sub research question (Section 6.1). By simulating the application
to a different dataset consisting of Superview-1 imagery in the Netherlands, a clear overview is
created of what is needed to apply SAT-NGP to different data.
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The results show that a NeRF model requires specific inputs, all of which need to be in the
perfect format. At least 10 input images are required for SAT-NGP. These images need to have
certain metadata available, as well as an RPC report. The RPC report is preferably bundle
adjusted and needs to be combined with the metadata in a JSON file for each separate satellite
image. Furthermore, a gt DSM is needed for evaluation, which should be created around the
same time as the satellite imagery. A classified TIF file specifying a class for each pixel is also
needed.

Currently, the combination of these different files and the adjustments that need to be made
to them, such as bundle adjusting the RPCs or creating the classified TIF file, shows that it is
challenging to apply NeRF to a dataset different from the DFC2019 data. Everything is highly
dependent on one another and if something is not exactly configured or aligned the right way,
the whole model will fail to produce results. The DFC2019 dataset, especially the prepared 004,
068, 214 and 260 AOIs, provides a ”perfect” scenario, which is not the case for most other data.
Some NeRF models have been applied to other datasets such as EO-NeRF, SpS-NeRF, BRDF-
NeRF (Maŕı et al., 2023; L. Zhang and Rupnik, 2023; L. Zhang et al., 2024). EO-Nerf is applied
to the Intelligence Advanced Research Projects Activity Multi-View Stereo 3D Mapping dataset,
however, this is another challenge dataset (similarly to DFC2019) and is similarly considered
a ”perfect” scenario (Bosch et al., 2016; Maŕı et al., 2023). The authors of SpS-NeRF and
BRDF-NeRF managed to apply their respective NeRF models to Pléiades imagery. Both NeRF
models only need 2 or 3 satellite images, which need to be taken at roughly the same time,
due to the lack of a transient object removal technique. A downside of the models is that they
require a depth input beforehand, in the form of a rough DSM, to guide the sampling of rays.
In both SpS-NeRF and BRDF-NeRF, SRTM is used as a rough guidance DSM. Alternatively,
SGM can be used to provide a low resolution depth map (L. Zhang and Rupnik, 2023; L. Zhang
et al., 2024). The lack of transient objects and need for a rough depth map make the models
less usable but more applicable to datasets different from the DFC2019 data. The evaluation
shows that there is still room for improvement considering the applicability of NeRFs that create
DSMs from satellite imagery in general. Real-life datasets are often incomplete or lack other
requirements for a DSM creating NeRF model to work, as is the case for the Superview-1 data
for which no classified TIF file was available and many adjustments needed to be made. If DSM
creation from NeRFs can be made easier to apply, their promising results will become more
accessible and implemented in real-life case studies.

6.4.1 Applicability takeaways and limitations

The applicability study shows that it is still difficult to apply DSM creating NeRFs to other
datasets. Most NeRFs have not been applied to other data or to real-life case studies, indicating
that it is still hard to do so. Currently, there are too many specific requirements for a NeRF
model to work optimally.

It is important to note that this applicability study has only investigated SAT-NGP. Other
NeRF models might be easier to implement, although literature indicates that this is not the
case (Billouard et al., 2024; Derksen and Izzo, 2021; Maŕı et al., 2022; Wan et al., 2024; Xie et
al., 2023; T. Zhang et al., 2024). Furthermore, the applicability is tested solely on Superview-1
and AHN data. Although some research is done on available datasets for this research, there
might be other datasets that are easier to implement for NeRF.
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7 Conclusions

In conclusion, this thesis has investigated to what extent NeRFs can be used to create DSMs of
both urban and rural environments from satellite imagery. First, the optimal NeRF model for
this study was selected based on code availability, runtime, and accuracy. The model selection
was followed by an accuracy analysis that included 6 urban and 6 rural AOIs from the DFC2019
dataset. After that, a sensitivity analysis was conducted on the number of iterations and batch
size, to determine their impact on MAE values and runtime. Finally, the applicabillity analysis
focused on what is needed to apply NeRF to data different from DFC2019.

After a comprehensive literature research, this study has shown that considering the require-
ments for this research, SAT-NGP is the optimal model to use. Furthermore, the accuracy
results show that SAT-NGP produces more accurate results for urban areas compared to rural
areas. Multiple challenging situations are identified, including the edges of buildings, shadows,
flat surfaces, and trees. Sensitivity analysis indicated that, with a reduction of 45,000 in the
number of iterations, the SAT-NGP model can run 50% faster compared to the proposed model
configuration, with minimal to no accuracy loss. Changing the proposed ray batch size of 1024
yielded no improvements concerning the accuracy or runtime. Although NeRF shows promising
results, the applicability remains low. Numerous different files are required that need to be
perfectly adjusted and formatted in order for the model to work. Therefore, this research shows
that the extent to which NeRFs can be used to generate DSMs in urban and rural environments
can be considered limited. Future research should focus on improving the applicability of NeRF
to make it more accessible to the public. Furthermore, the issues concerning edges of buildings,
shadows, flat surfaces, and trees should be addressed. It is important to note that this research
only used SAT-NGP to derive results concerning the accuracy, sensitivity, and applicability. The
findings might not apply to other DSM generating NeRFs, although literature indicates similar
trends. Ultimately, NeRF still has a long way to go before it can become a widely used method
in both research and applied environments.
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8 Future work

This study involving literature research, accuracy analysis, sensitivity analysis and applicability
analysis, sparks many new questions concerning NeRFs that create DSMs from satellite imagery.
From these questions, some recommendations for future research can be made.

To improve the accuracy of DSMs generated by NeRF, research should focus on incorporat-
ing methods to handle shadows as they lead to errors. Research has already produced different
shadow models, such as the shadow-aware irradiance model of S-NeRF, improved by EO-NeRF,
however, these are still far from perfect (Derksen and Izzo, 2021; Maŕı et al., 2023). Further-
more, NeRF predicted DSMs are currently too smooth and lack sharp edges, resulting in errors.
Research should also focus on incorporating methods to find a solution for this problem. One of
the solutions could be edge constrained DSM refinement as proposed by Hu et al. (2025). Their
method is able to improve DSM accuracies up to 59.02%. Other issues lie in flat surfaces and
trees, these features are difficult for NeRF and other DSM generation methods to handle. For
SAT-NGP, it could be beneficial to remove the robust loss function to avoid tree removal and
improve performance for natural areas (Billouard et al., 2024).

Next to improving the accuracy, more research should also be conducted on the sensitivity
of NeRF to certain parameters. For example, research could include changing the number of
samples for each ray, or the number of hidden layers in the MLP network. Furthermore, it is
important to perform sensitivity analysis on all of the NeRF models and not just SAT-NGP.
Through sensitivity analysis, NeRFs can be better optimized, as this research has shown.

The literature research pointed out that there has been little application of NeRF to datasets
different from DFC2019. The DFC2019 dataset consists mostly of urban or rural AOIs, but
environments with purely vegetation and bare soil or rock are absent (Le Saux et al., 2019).
Since DSMs are used extensively in natural research areas such as flood risk analysis, mangrove
forest mapping, and land cover classification, more NeRFs should focus on generating accurate
DSMs of these environments (McClean et al., 2020; Simard et al., 2006). Therefore, research
should focus on making the DSM creating NeRFs more applicable to other datasets and include
environments comprising solely vegetation, soil and rock. This would open up many possibilities
and improve the use of NeRF. Currently, only SpS-NeRF and BRDF-NeRF are partly focused
on these natural environments (L. Zhang and Rupnik, 2023; L. Zhang et al., 2024). It could
be promising to combine the methods of BRDF-NeRF, the most accurate model for natural
environments, and EO-NeRF, the most accurate model for urban environments, to create a
NeRF capable of handling both (Maŕı et al., 2023; L. Zhang et al., 2024). However, it could also
be wiser to develop separate NeRF models for specific purposes. To enhance the applicability
of DSM generating NeRFs, it would be interesting to integrate them into NeRFstudio or a
separate framework. NeRFstudio is a software program that lets you choose between different
NeRF models for scene reconstruction. You only have to provide the input, which makes it
much easier to test different NeRF models (Tancik et al., 2023). Furthermore, it would be
greatly beneficial if code is made available for all of the NeRF models, to enhance research and
eliminate double work.

It would also be interesting to see if NeRF can be applied using aerial imagery. This type
of imagery usually has a higher resolution compared to satellite imagery, which could result
in more accurate results. Additionally, the flight path can be adjusted to acquire data from
different angles. This results in high-quality datasets that might lead to highly accurate results.
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There are number of additions that could have been introduced in this research if more time
was available. Firstly, it would have been interesting to implement the applicability research
and use SAT-NGP on the Superview-1 data. The results could be compared with DFC2019
results and the performance of SAT-NGP could be investigated in areas that consist solely of
vegetation. Additionally, it would be a significant contribution to the scientific field if a pipeline
could be developed to apply NeRF to data different from the DFC2019. During the research it
became clear that it would take too much time for this thesis. Additionally, as mentioned above,
more parameters could be used for the sensitivity analysis such as the number of samples for
each ray or the number of layers in the MLP network. Finally, it would have been interesting
to try and incorporate different techniques in an existing NeRF model, such as a different solar
correction model or robust loss function.
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9 Appendix

9.1 Appendix A

1 import rpcm

2 import glob

3 import os

4 import numpy as np

5 import srtm4

6 import shutil

7 import sys

8 import json

9 from sat_utils import get_file_id

10 import rasterio

11

12

13 def rio_open (*args ,** kwargs):

14 import rasterio

15 import warnings

16

17 with warnings.catch_warnings ():

18 warnings.filterwarnings("ignore", category=UserWarning)

19 return rasterio.open(*args ,** kwargs)

20

21 def get_image_lonlat_aoi(rpc , h, w):

22 z = srtm4.srtm4(rpc.lon_offset , rpc.lat_offset)

23 cols , rows , alts = [0,w,w,0], [0,0,h,h], [z]*4

24 lons , lats = rpc.localization(cols , rows , alts)

25 lonlat_coords = np.vstack ((lons , lats)).T

26 geojson_polygon = {"coordinates": [lonlat_coords.tolist ()], "type": "Polygon

"}

27 x_c = lons.min() + (lons.max() - lons.min())/2

28 y_c = lats.min() + (lats.max() - lats.min())/2

29 geojson_polygon["center"] = [x_c , y_c]

30 return geojson_polygon

31

32 def run_ba(img_dir , output_dir):

33

34 from bundle_adjust.cam_utils import SatelliteImage

35 from bundle_adjust.ba_pipeline import BundleAdjustmentPipeline

36 from bundle_adjust import loader

37

38 # load input data

39 os.makedirs(output_dir , exist_ok=True)

40 print(img_dir)

41 myimages = sorted(glob.glob(img_dir + "/*.tif"))

42 print(myimages)

43 myrpcs = [rpcm.rpc_from_geotiff(p) for p in myimages]

44 input_images = [SatelliteImage(fn , rpc) for fn, rpc in zip(myimages , myrpcs)

]

45

46 ba_input_data = {}

47 ba_input_data[’in_dir ’] = img_dir

48 ba_input_data[’out_dir ’] = os.path.join(output_dir , "ba_files")

49 ba_input_data[’images ’] = input_images

50 print(’Input␣data␣set!\n’)

51

52 # redirect all prints to a bundle adjustment logfile inside the output

directory

53 os.makedirs(ba_input_data[’out_dir ’], exist_ok=True)

54 path_to_log_file = "{}/ bundle_adjust.log".format(ba_input_data[’out_dir ’])

55 print("Running␣bundle␣adjustment␣for␣RPC␣model␣refinement␣...")

56 print("Path␣to␣log␣file:␣{}".format(path_to_log_file))
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57 log_file = open(path_to_log_file , "w+")

58 sys.stdout = log_file

59 sys.stderr = log_file

60 # run bundle adjustment

61 #tracks_config = {’FT_reset ’: True , ’FT_sift_detection ’: ’s2p ’, ’

FT_sift_matching ’: ’epipolar_based ’, "FT_K": 300}

62 tracks_config = {’FT_reset ’: False , ’FT_save ’: True , ’FT_sift_detection ’: ’

s2p’, ’FT_sift_matching ’: ’epipolar_based ’}

63 ba_extra = {"cam_model": "rpc"}

64 print(’ba_extra ’, ba_extra)

65 ba_pipeline = BundleAdjustmentPipeline(ba_input_data , tracks_config=

tracks_config , extra_ba_config=ba_extra)

66 ba_pipeline.run()

67 # close logfile

68 sys.stderr = sys.__stderr__

69 sys.stdout = sys.__stdout__

70 log_file.close ()

71 print("...␣done␣!")

72 print("Path␣to␣output␣files:␣{}".format(ba_input_data[’out_dir ’]))

73

74 # save all bundle adjustment parameters in a temporary directory

75 ba_params_dir = os.path.join(ba_pipeline.out_dir , "ba_params")

76 os.makedirs(ba_params_dir , exist_ok=True)

77 np.save(os.path.join(ba_params_dir , "pts_ind.npy"), ba_pipeline.ba_params.

pts_ind)

78 np.save(os.path.join(ba_params_dir , "cam_ind.npy"), ba_pipeline.ba_params.

cam_ind)

79 np.save(os.path.join(ba_params_dir , "pts3d.npy"), ba_pipeline.ba_params.

pts3d_ba - ba_pipeline.global_transform)

80 np.save(os.path.join(ba_params_dir , "pts2d.npy"), ba_pipeline.ba_params.

pts2d)

81 fnames_in_use = [ba_pipeline.images[idx]. geotiff_path for idx in ba_pipeline

.ba_params.cam_prev_indices]

82 loader.save_list_of_paths(os.path.join(ba_params_dir , "geotiff_paths.txt"),

fnames_in_use)

83

84 def create_dataset_from_DFC2019_data(aoi_id , img_dir , dfc_dir , output_dir ,

use_ba=False):

85

86 # create a json file of metadata for each input image

87 # contains: h, w, rpc , sun elevation , sun azimuth , acquisition date

88 # + geojson polygon with the aoi of the image

89 os.makedirs(output_dir , exist_ok=True)

90 path_to_dsm = os.path.join(dfc_dir , "Track3 -Truth /{} _DSM.tif".format(aoi_id)

)

91 if aoi_id [:3] == "JAX":

92 path_to_msi = "http ://138.231.80.166:2334/ core3d/Jacksonville/WV3/MSI"

93 elif aoi_id [:3] == "OMA":

94 path_to_msi = "http ://138.231.80.166:2334/ core3d/Omaha/WV3/MSI"

95 if use_ba:

96 from bundle_adjust import loader

97 geotiff_paths = loader.load_list_of_paths(os.path.join(output_dir , "

ba_files/ba_params/geotiff_paths.txt"))

98 geotiff_paths = [p.replace("/pan_crops/", "/crops/") for p in

geotiff_paths]

99 geotiff_paths = [p.replace("PAN.tif", "RGB.tif") for p in geotiff_paths]

100 ba_geotiff_basenames = [os.path.basename(x) for x in geotiff_paths]

101 ba_kps_pts3d_ind = np.load(os.path.join(output_dir , "ba_files/ba_params/

pts_ind.npy"))

102 ba_kps_cam_ind = np.load(os.path.join(output_dir , "ba_files/ba_params/

cam_ind.npy"))

103 ba_kps_pts2d = np.load(os.path.join(output_dir , "ba_files/ba_params/

pts2d.npy"))
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104 else:

105 geotiff_paths = sorted(glob.glob(img_dir + "/*.tif"))

106

107 for rgb_p in geotiff_paths:

108 d = {}

109 d["img"] = os.path.basename(rgb_p)

110

111 src = rio_open(rgb_p)

112 d["height"] = int(src.meta["height"])

113 d["width"] = int(src.meta["width"])

114 original_rpc = rpcm.RPCModel(src.tags(ns=’RPC’), dict_format="geotiff")

115

116 img_id = src.tags()["NITF_IID2"]. replace("␣", "_")

117 msi_p = "{}/{}. NTF".format(path_to_msi , img_id)

118 src = rio_open(msi_p)

119 d["sun_elevation"] = src.tags()["NITF_USE00A_SUN_EL"]

120 d["sun_azimuth"] = src.tags()["NITF_USE00A_SUN_AZ"]

121 d["acquisition_date"] = src.tags()[’NITF_STDIDC_ACQUISITION_DATE ’]

122 d["geojson"] = get_image_lonlat_aoi(original_rpc , d["height"], d["width"

])

123

124 src = rio_open(path_to_dsm)

125 dsm = src.read()[0, :, :]

126 d["min_alt"] = int(np.round(dsm.min() - 1))

127 d["max_alt"] = int(np.round(dsm.max() + 1))

128

129 if use_ba:

130 # use corrected rpc

131 rpc_path = os.path.join(output_dir , "ba_files/rpcs_adj /{}. rpc_adj".

format(get_file_id(rgb_p)))

132 d["rpc"] = rpcm.rpc_from_rpc_file(rpc_path).__dict__

133 #d_out ["rpc"] = rpc_rpcm_to_geotiff_format(rpc.__dict__)

134

135 # additional fields for depth supervision

136 ba_kps_pts3d_path = os.path.join(output_dir , "ba_files/ba_params/

pts3d.npy")

137 shutil.copyfile(ba_kps_pts3d_path , os.path.join(output_dir , "pts3d.

npy"))

138 cam_idx = ba_geotiff_basenames.index(d["img"])

139 d["keypoints"] = {"2d_coordinates": ba_kps_pts2d[ba_kps_cam_ind ==

cam_idx , :]. tolist (),

140 "pts3d_indices": ba_kps_pts3d_ind[ba_kps_cam_ind

== cam_idx ]. tolist ()}

141 else:

142 # use original rpc

143 d["rpc"] = original_rpc.__dict__

144

145 with open(os.path.join(output_dir , "{}. json".format(get_file_id(rgb_p)))

, "w") as f:

146 json.dump(d, f, indent =2)

147

148 def create_train_test_splits(input_sample_ids , test_percent =0.15,

min_test_samples =2):

149

150 def shuffle_array(array):

151 import random

152 v = array.copy()

153 random.shuffle(v)

154 return v

155

156 n_samples = len(input_sample_ids)

157 input_sample_ids = np.array(input_sample_ids)

158 all_indices = shuffle_array(np.arange(n_samples))
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159 n_test = max(min_test_samples , int(test_percent * n_samples))

160 n_train = n_samples - n_test

161

162 train_indices = all_indices [: n_train]

163 test_indices = all_indices[-n_test :]

164

165 train_samples = input_sample_ids[train_indices ]. tolist ()

166 test_samples = input_sample_ids[test_indices ]. tolist ()

167

168 return train_samples , test_samples

169

170 def read_DFC2019_lonlat_aoi(aoi_id , dfc_dir):

171 from bundle_adjust import geo_utils

172 if aoi_id [:3] == "OMA":

173 zonestring = "15T"

174 elif aoi_id [:3] == "JAX":

175 zonestring = "17N"

176 else:

177 raise ValueError("AOI␣not␣valid.␣Expected␣JAX_(3 digits)␣but␣received␣{}"

.format(aoi_id))

178 roi = np.loadtxt(os.path.join(dfc_dir , "Track3 -Truth/" + aoi_id + "_DSM.txt"

))

179 xoff , yoff , xsize , ysize , resolution = roi[0], roi[1], int(roi [2]), int(roi

[2]), roi [3]

180 ulx , uly , lrx , lry = xoff , yoff + ysize * resolution , xoff + xsize *

resolution , yoff

181 xmin , xmax , ymin , ymax = ulx , lrx , uly , lry

182 easts = [xmin , xmin , xmax , xmax , xmin]

183 norths = [ymin , ymax , ymax , ymin , ymin]

184 lons , lats = geo_utils.lonlat_from_utm(easts , norths , zonestring)

185 lonlat_bbx = geo_utils.geojson_polygon(np.vstack ((lons , lats)).T)

186 return lonlat_bbx

187

188 def crop_geotiff_lonlat_aoi(geotiff_path , output_path , lonlat_aoi):

189 with rasterio.open(geotiff_path , ’r’) as src:

190 profile = src.profile

191 tags = src.tags()

192 crop , x, y = rpcm.utils.crop_aoi(geotiff_path , lonlat_aoi)

193

194 rpc = rpcm.rpc_from_geotiff(geotiff_path)

195 rpc.row_offset -= y

196 rpc.col_offset -= x

197 not_pan = len(crop.shape) > 2

198 if not_pan:

199 profile["height"] = crop.shape [1]

200 profile["width"] = crop.shape [2]

201 else:

202 profile["height"] = crop.shape [0]

203 profile["width"] = crop.shape [1]

204 profile["count"] = 1

205 with rasterio.open(output_path , ’w’, ** profile) as dst:

206 if not_pan:

207 dst.write(crop)

208 else:

209 dst.write(crop , 1)

210 dst.update_tags (** tags)

211 dst.update_tags(ns=’RPC’, **rpc.to_geotiff_dict ())

212

213

214 def create_satellite_dataset(aoi_id , dfc_dir , output_dir , ba=True , crop_aoi=True

, splits=False):

215 if crop_aoi:

216 # prepare crops
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217 aoi_lonlat = read_DFC2019_lonlat_aoi(aoi_id , dfc_dir)

218 crops_dir = os.path.join(output_dir , "crops")

219 os.makedirs(crops_dir , exist_ok=True)

220 img_dir = os.path.join(dfc_dir , "Track3 -RGB /{}".format(aoi_id))

221 print(’img_dir ’, img_dir)

222 myimages = sorted(glob.glob(img_dir + "/*.tif"))

223 print(myimages)

224 pan = True

225 if aoi_id in ["JAX_068", "JAX_509"]:

226 pan_dir = "/vsicurl/http ://138.231.80.166:2332/ grss -2019/ track_3/

Track3 -MSI -1/"

227 elif aoi_id in ["JAX_156", "JAX_165"]:

228 pan_dir = "/vsicurl/http ://138.231.80.166:2332/ grss -2019/ track_3/

Track3 -MSI -2/"

229 elif aoi_id in ["JAX_359"]:

230 pan_dir = "/vsicurl/http ://138.231.80.166:2332/ grss -2019/ track_3/

Track3 -MSI -3/"

231 elif aoi_id in ["OMA_212"]:

232 pan_dir = "/vsicurl/http ://138.231.80.166:2332/ grss -2019/ track_3/

Track3 -MSI -7/"

233 else:

234 pan_dir = "/vsicurl/http ://138.231.80.166:2332/ grss -2019/ track_3/

Track3 -MSI -7/"

235 for geotiff_path in myimages:

236 out_crop_path = os.path.join(crops_dir , os.path.basename(

geotiff_path))

237 crop_geotiff_lonlat_aoi(geotiff_path , out_crop_path , aoi_lonlat)

238 if pan:

239 pan_crops_dir = os.path.join(output_dir , "pan_crops")

240 os.makedirs(pan_crops_dir , exist_ok=True)

241 out_crop_path = os.path.join(pan_crops_dir , os.path.basename(

geotiff_path))

242 geotiff_path = os.path.join(pan_dir , os.path.basename(

geotiff_path).replace("RGB.tif", "PAN.tif"))

243 crop_geotiff_lonlat_aoi(geotiff_path , out_crop_path , aoi_lonlat)

244 img_dir = crops_dir

245 else:

246 img_dir = os.path.join(dfc_dir , "Track3 -RGB /{}".format(aoi_id))

247 if ba:

248 run_ba(img_dir , output_dir)

249 create_dataset_from_DFC2019_data(aoi_id , img_dir , dfc_dir , output_dir ,

use_ba=ba)

250

251 # create train and test splits

252 if splits:

253 json_files = [os.path.basename(p) for p in glob.glob(os.path.join(

output_dir , "*.json"))]

254 train_samples , test_samples = create_train_test_splits(json_files)

255 with open(os.path.join(output_dir , "train.txt"), "w+") as f:

256 f.write("\n".join(train_samples))

257 with open(os.path.join(output_dir , "test.txt"), "w+") as f:

258 f.write("\n".join(test_samples))

259

260 print("done")

261

262 if __name__ == ’__main__ ’:

263 import fire

264 fire.Fire(create_satellite_dataset)
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9.2 Appendix B

1 {

2 "img": "JAX_004_006_RGB.tif",

3 "height": 813,

4 "width": 788,

5 "sun_elevation": "+33.5",

6 "sun_azimuth": "158.6",

7 "acquisition_date": "20141214160402",

8 "geojson": {

9 "coordinates": [

10 [

11 [

12 -81.70781462153118 ,

13 30.358940042487827

14 ],

15 [

16 -81.70513996047383 ,

17 30.359033380135823

18 ],

19 [

20 -81.70513487087763 ,

21 30.35664441314813

22 ],

23 [

24 -81.70780935131354 ,

25 30.356551109701456

26 ]

27 ]

28 ],

29 "type": "Polygon",

30 "center": [

31 -81.7064747462044 ,

32 30.35779224491864

33 ]

34 },

35 "min_alt": -24,

36 "max_alt": 1,

37 "rpc": {

38 "row_offset": 404.72917331329 ,

39 "col_offset": 394.640297401247 ,

40 "lat_offset": 30.357787163399 ,

41 "lon_offset": -81.706481969014 ,

42 "alt_offset": -21.0,

43 "row_scale": 416.501476005362 ,

44 "col_scale": 404.000879344507 ,

45 "lat_scale": 0.00221709962 ,

46 "lon_scale": 0.002439793864 ,

47 "alt_scale": 501.0 ,

48 "row_num": [

49 1.3821612e-05,

50 0.069553908458 ,

51 -1.811420563723 ,

52 0.742025718701 ,

53 3.247583e-06,

54 -2.041298e-06,

55 -3.072309e-06,

56 -2.5164231e-05,

57 -4.358526e-06,

58 -5.3558299e-05,

59 -2.12126e-07,

60 2.131e-09,

61 -1.02536e-07,
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62 6.2172e-08,

63 4.8317e-08,

64 3.0404e-08,

65 8.311e-08,

66 -1.275e-09,

67 -2.27536e-07,

68 -2.5306e-08

69 ],

70 "row_den": [

71 1.0,

72 8.247141e-06,

73 1.9326941e-05,

74 2.3912253e-05,

75 4.8447e-08,

76 1.54514e-07,

77 -8.2283e-08,

78 -2.3215e-08,

79 2.39855e-07,

80 2.661e-09,

81 -8.09e-10,

82 1.167e-09,

83 7.75e-10,

84 1.222e-09,

85 1.57e-10,

86 5.401e-09,

87 2.983e-09,

88 -1.91e-09,

89 -7.143e-09,

90 -6.42e-10

91 ],

92 "col_num": [

93 -0.001225964267 ,

94 1.779131163196 ,

95 0.003508626895 ,

96 -0.778770628026 ,

97 -0.000135167448 ,

98 -5.1215316e-05,

99 -0.000314775304 ,

100 0.00090483435 ,

101 -1.7882154e-05,

102 6.4791771e-05,

103 -2.54656e-07,

104 4.34865e-07,

105 -4.2573e-08,

106 -4.7445e-07,

107 -3.43344e-07,

108 -8.246e-09,

109 7.1166e-08,

110 -3.42252e-07,

111 4.7512e-08,

112 2.16623e-07

113 ],

114 "col_den": [

115 1.0,

116 0.000431847146 ,

117 -1.5192884e-05,

118 -0.000694560823 ,

119 -1.25983e-07,

120 -3.2255e-07,

121 -2.3177e-08,

122 -6.9578e-08,

123 -1.19727e-07,

124 -5.43418e-07,
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125 -3.34e-10,

126 3.106e-09,

127 5.83e-10,

128 2.692e-09,

129 1.23e-10,

130 9.6e-11,

131 3.73e-10,

132 -4.963e-09,

133 -3.2e-10,

134 -2.065e-09

135 ]

136 }
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9.3 Appendix C

1 import os

2 import random

3 import rasterio

4 import numpy as np

5

6 import cv2

7 import matplotlib.pyplot as plt

8

9 import torch

10 import mcubes

11

12 from packaging import version as pver

13 from torchmetrics.functional import structural_similarity_index_measure

14

15

16

17 def custom_meshgrid (*args):

18 # ref: https :// pytorch.org/docs/stable/generated/torch..html?highlight=

meshgrid#torch.meshgrid

19 if pver.parse(torch.__version__) < pver.parse(’1.10’):

20 return torch.meshgrid (*args)

21 else:

22 return torch.meshgrid (*args , indexing=’ij’)

23

24 @torch.jit.script

25 def linear_to_srgb(x):

26 return torch.where(x < 0.0031308 , 12.92 * x, 1.055 * x ** 0.41666 - 0.055)

27

28

29 @torch.jit.script

30 def srgb_to_linear(x):

31 return torch.where(x < 0.04045 , x / 12.92, ((x + 0.055) / 1.055) ** 2.4)

32

33

34 def seed_everything(seed):

35 random.seed(seed)

36 os.environ[’PYTHONHASHSEED ’] = str(seed)

37 np.random.seed(seed)

38 torch.manual_seed(seed)

39 torch.cuda.manual_seed(seed)

40 torch.backends.cudnn.deterministic = True

41

42

43 def visualize_depth(depth):

44 """

45 depth: (H, W)

46 """

47 x = depth.cpu().numpy()

48 x = np.nan_to_num(x) # change nan to 0

49 mi = np.min(x) # get minimum depth

50 ma = np.max(x)

51 x = (x-mi)/(ma -mi+1e-8) # normalize to 0~1

52 x = (255*x).astype(np.uint8)

53 x_ = np.clip(x, 0, 255)

54 return x_

55

56 def save_output_image(input , output_path , source_path):

57 """

58 input: (D, H, W) where D is the number of channels (3 for rgb , 1 for

grayscale)

59 can be a pytorch tensor or a numpy array
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60 """

61 # convert input to numpy array float32

62 if len(input.shape) == 3: # rgb

63 H, W, D = input.shape

64 input = input.view(D, H, W)

65 else: # maybe depth

66 H, W = input.shape

67 input = input.view(1, H, W)

68 if torch.is_tensor(input):

69 im_np = input.type(torch.FloatTensor).cpu().numpy()

70 else:

71 im_np = input.astype(np.float32)

72

73 os.makedirs(os.path.dirname(output_path), exist_ok=True)

74 with rasterio.open(source_path , ’r’) as src:

75 profile = src.profile

76 profile["dtype"] = rasterio.float32

77 profile["height"] = im_np.shape [1]

78 profile["width"] = im_np.shape [2]

79 profile["count"] = im_np.shape [0]

80 with rasterio.open(output_path , ’w’, ** profile) as dst:

81 dst.write(im_np)

82

83 def cv2_save_plot(x, path , title , is_depth=False):

84 # x: [3, H, W] or [1, H, W] or [H, W]

85

86 if is_depth:

87 x = visualize_depth(x)

88 plt.imshow(x)

89 plt.title(title)

90 plt.colorbar ()

91 plt.savefig(path , bbox_inches=’tight’, dpi =200)

92 plt.clf()

93 else:

94 plt.imshow(x)

95 plt.title(title)

96 plt.savefig(path , bbox_inches=’tight’, dpi =200)

97 plt.clf()

98

99

100 def extract_fields(bound_min , bound_max , resolution , query_func , S=128):

101

102 X = torch.linspace(bound_min [0], bound_max [0], resolution).split(S)

103 Y = torch.linspace(bound_min [1], bound_max [1], resolution).split(S)

104 Z = torch.linspace(bound_min [2], bound_max [2], resolution).split(S)

105

106 u = np.zeros([ resolution , resolution , resolution], dtype=np.float32)

107 with torch.no_grad ():

108 for xi , xs in enumerate(X):

109 for yi , ys in enumerate(Y):

110 for zi , zs in enumerate(Z):

111 xx , yy , zz = custom_meshgrid(xs , ys , zs)

112 pts = torch.cat([xx.reshape(-1, 1), yy.reshape(-1, 1), zz.

reshape(-1, 1)], dim=-1) # [S, 3]

113 val = query_func(pts).reshape(len(xs), len(ys), len(zs)).

detach ().cpu().numpy () # [S, 1] --> [x, y, z]

114 u[xi * S: xi * S + len(xs), yi * S: yi * S + len(ys), zi * S

: zi * S + len(zs)] = val

115 return u

116

117

118 def extract_geometry(bound_min , bound_max , resolution , threshold , query_func):

119 u = extract_fields(bound_min , bound_max , resolution , query_func)
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120

121 vertices , triangles = mcubes.marching_cubes(u, threshold)

122

123 b_max_np = bound_max.detach ().cpu().numpy ()

124 b_min_np = bound_min.detach ().cpu().numpy ()

125

126 vertices = vertices / (resolution - 1.0) * (b_max_np - b_min_np)[None , :] +

b_min_np[None , :]

127 return vertices , triangles

128

129

130 class PSNRMeter:

131 def __init__(self):

132 self.V = 0

133 self.N = 0

134

135 def clear(self):

136 self.V = 0

137 self.N = 0

138

139 def prepare_inputs(self , *inputs):

140 outputs = []

141 for i, inp in enumerate(inputs):

142 if torch.is_tensor(inp):

143 inp = inp.detach ().cpu().numpy()

144 outputs.append(inp)

145

146 return outputs

147

148 def update(self , preds , truths):

149 preds , truths = self.prepare_inputs(preds , truths) # [B, N, 3] or [B, H,

W, 3], range[0, 1]

150

151 # simplified since max_pixel_value is 1 here.

152 psnr = -10 * np.log10(np.mean((preds - truths) ** 2))

153

154 self.V += psnr

155 self.N += 1

156

157 def measure(self):

158 return self.V / self.N

159

160 def write(self , writer , global_step , prefix=""):

161 writer.add_scalar(os.path.join(prefix , "PSNR"), self.measure (),

global_step)

162

163 def report(self):

164 return f’PSNR␣=␣{self.measure ():.6f}’

165

166

167 class SSIMMeter:

168 def __init__(self , device=None):

169 self.V = 0

170 self.N = 0

171

172 self.device = device if device is not None else torch.device(’cuda’ if

torch.cuda.is_available () else ’cpu’)

173

174 def clear(self):

175 self.V = 0

176 self.N = 0

177

178 def prepare_inputs(self , *inputs):
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179 outputs = []

180 for i, inp in enumerate(inputs):

181 inp = inp.permute(0, 3, 1, 2).contiguous () # [B, 3, H, W]

182 inp = inp.to(self.device)

183 outputs.append(inp)

184 return outputs

185

186 def update(self , preds , truths):

187 preds , truths = self.prepare_inputs(preds , truths) # [B, H, W, 3] --> [B

, 3, H, W], range in [0, 1]

188

189 ssim = structural_similarity_index_measure(preds , truths)

190

191 self.V += ssim

192 self.N += 1

193

194 def measure(self):

195 return self.V / self.N

196

197 def write(self , writer , global_step , prefix=""):

198 writer.add_scalar(os.path.join(prefix , "SSIM"), self.measure (),

global_step)

199

200 def report(self):

201 return f’SSIM␣=␣{self.measure ():.6f}’

202

203

204 def predefined_val_ts(img_id):

205

206 aoi_id = img_id [:7]

207

208 if aoi_id == "JAX_068":

209 d = {"JAX_068_022_RGB": 8,

210 "JAX_068_002_RGB": 8,

211 "JAX_068_012_RGB": 1,

212 "JAX_068_013_RGB": 1,

213 "JAX_068_011_RGB": 1} #3

214 elif aoi_id == "JAX_004":

215 d = {"JAX_004_002_RGB": 0,

216 "JAX_004_015_RGB": 0,

217 "JAX_004_014_RGB": 0,

218 "JAX_004_009_RGB": 5}

219 elif aoi_id == "JAX_017":

220 d = {"JAX_017_001_RGB": 8,

221 "JAX_017_015_RGB": 0,

222 "JAX_017_012_RGB": 10,

223 "JAX_017_004_RGB": 5}

224 elif aoi_id == "JAX_031":

225 d = {"JAX_031_009_RGB": 5,

226 "JAX_031_001_RGB": 5,

227 "JAX_031_012_RGB": 10,

228 "JAX_031_004_RGB": 0}

229 elif aoi_id == "JAX_167":

230 d = {"JAX_167_005_RGB": 8,

231 "JAX_167_003_RGB": 0,

232 "JAX_167_001_RGB": 0,

233 "JAX_167_004_RGB": 0}

234 elif aoi_id == "JAX_105":

235 d = {"JAX_105_011_RGB": 5,

236 "JAX_105_007_RGB": 5,

237 "JAX_105_020_RGB": 0,

238 "JAX_105_004_RGB": 0}

239 elif aoi_id == "JAX_117":
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240 d = {"JAX_117_019_RGB": 5,

241 "JAX_117_014_RGB": 8,

242 "JAX_117_020_RGB": 0,

243 "JAX_117_004_RGB": 0}

244 elif aoi_id == "JAX_156":

245 d = {"JAX_156_020_RGB": 0,

246 "JAX_156_003_RGB": 0,

247 "JAX_156_008_RGB": 5,

248 "JAX_156_014_RGB": 10}

249 elif aoi_id == "JAX_164":

250 d = {"JAX_164_021_RGB": 5,

251 "JAX_164_011_RGB": 5,

252 "JAX_164_005_RGB": 5,

253 "JAX_164_014_RGB": 10}

254 elif aoi_id == "JAX_165":

255 d = {"JAX_165_002_RGB": 10,

256 "JAX_165_009_RGB": 8,

257 "JAX_165_010_RGB": 8,

258 "JAX_165_014_RGB": 10}

259 elif aoi_id == "JAX_166":

260 d = {"JAX_166_013_RGB": 0,

261 "JAX_166_022_RGB": 3,

262 "JAX_166_004_RGB": 10,

263 "JAX_166_012_RGB": 10}

264 elif aoi_id == "JAX_203":

265 d = {"JAX_203_002_RGB": 10,

266 "JAX_203_019_RGB": 10,

267 "JAX_203_026_RGB": 5,

268 "JAX_203_004_RGB": 17}

269 elif aoi_id == "JAX_214":

270 d = {"JAX_214_020_RGB": 0,

271 "JAX_214_007_RGB": 8,

272 "JAX_214_006_RGB": 8,

273 "JAX_214_001_RGB": 18,

274 "JAX_214_008_RGB": 2,

275 "JAX_214_011_RGB": 17}

276 elif aoi_id == "JAX_260":

277 d = {"JAX_260_015_RGB": 0,

278 "JAX_260_006_RGB": 3,

279 "JAX_260_004_RGB": 10,

280 "JAX_260_011_RGB": 10}

281 elif aoi_id == "JAX_359":

282 d = {"JAX_359_011_RGB": 0,

283 "JAX_359_012_RGB": 3,

284 "JAX_359_009_RGB": 10,

285 "JAX_359_002_RGB": 10}

286 elif aoi_id == "JAX_559":

287 d = {"JAX_559_023_RGB": 8,

288 "JAX_559_022_RGB": 8,

289 "JAX_559_012_RGB": 0,

290 "JAX_559_009_RGB": 5}

291 elif aoi_id == "OMA_144":

292 d = {"OMA_144_006_RGB": 0,

293 "OMA_144_022_RGB": 8,

294 "OMA_144_034_RGB": 0,

295 "OMA_144_007_RGB": 10}

296 elif aoi_id == "OMA_357":

297 d = {"OMA_357_041_RGB": 10,

298 "OMA_357_042_RGB": 8,

299 "OMA_357_034_RGB": 0,

300 "OMA_357_007_RGB": 5}

301 else:

302 return None

86



303 return d[img_id]

304

305 def get_parameters(models):

306 """

307 Get all model parameters recursively

308 models can be a list , a dictionary or a single pytorch model

309 """

310 parameters = []

311 if isinstance(models , list):

312 for model in models:

313 parameters += get_parameters(model)

314 elif isinstance(models , dict):

315 for model in models.values ():

316 parameters += get_parameters(model)

317 else:

318 # models is actually a single pytorch model

319 parameters += list(models.parameters ())

320 return parameters

321

322

323 def _flatten(l):

324 return [item.cpu() for sublist in l for item in sublist]
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9.4 Appendix D

Figure 41: 3D visualizations of the urban AOIs.
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Figure 42: 3D visualizations of the rural AOIs.
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Lemâıtre, F., Métois, M., Pierrot-Deseilligny, M., Rupnik, E., & Tanguy, B. (2019).
Retrieving soil surface roughness with the hapke photometric model: Confrontation with
the ground truth. Remote Sensing of Environment, 225, 1–15. https://doi.org//10.1016/
j.rse.2019.02.014

Lastilla, L., Belloni, V., Ravanelli, R., & Crespi, M. (2021). Dsm generation from single and cross-
sensor multi-view satellite images using the new agisoft metashape: The case studies of
trento and matera (italy). Remote Sensing, 13 (4). https://doi.org/10.3390/rs13040593
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